首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

2.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

3.
Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 x 10(-10) M. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of 125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.  相似文献   

4.
It has been documented that hypoxia enhances coronary vasculogenesis and angiogenesis in cultured embryonic quail hearts via the upregulation of vascular endothelial growth factor (VEGF). In this study, we compared the functions of two VEGF splice variants. Ventricles from 6-day-old embryonic quail hearts were cultured on three-dimensional collagen gels. Recombinant human VEGF(121) or VEGF(165) were added to the culture medium for 48 h, and vascular growth was visualized by immunostaining with a quail-specific endothelial cell (EC) marker, QH1. VEGF(165) enhanced vascular growth in a dose-dependent manner: 5 ng/ml of VEGF(165) slightly increased the number of ECs, 10 ng/ml of VEGF(165) increased the incorporation of ECs into tubular structures, and at 20 ng/ml of VEGF(165) wider tubes were formed. This pattern plateaued at the 50 ng/ml dose. In contrast, VEGF(121) did not enhance either the number of ECs or tube formation at these or higher dosages. Combined effects of hypoxia and exogenous VEGF(165) were then compared. Tube formation from the heart explants treated with both hypoxia and 50 ng/ml of VEGF(165) had a morphology intermediate to those treated with hypoxia or VEGF(165) alone. Immunocytochemistry study revealed EC lumenization under all culture conditions. However, the addition of VEGF(165) stimulated the coalescence of ECs to form larger vessels. We conclude the following: 1) VEGF(121) and VEGF(165) induced by hypoxia have different functions on coronary vascular growth, 2) unknown factors induced by hypoxia can modify the effect of VEGF(165), and 3) EC lumenization observed in the heart explant culture closely mimics in vivo coronary vasculogenesis.  相似文献   

5.
The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated to have differential ability to activate VEGFR-2-mediated effects on endothelial cells. Herein we investigate whether the recently described VEGF(165) isoform-specific receptor neuropilin-1 (Npn-1) is responsible for the difference in potency observed for these ligands. We demonstrate that although VEGFR-2 and Npn-1 form a complex, this complex does not result in an increase in VEGF(165) binding affinity. Therefore, the differential activity of VEGF(165) and VEGF(121) cannot be explained by a differential binding affinity for the complex. Using an antagonist that competes for VEGF(165) binding at the VEGFR-2.Npn-1 complex, we observe specific antagonism of VEGF(165)-meditated phosphorylation of VEGFR-2 without affecting the VEGF(121) response. These data indicate that the formation of the complex is responsible for the increased potency of VEGF(165) versus VEGF(121). Taken together, these data suggest a receptor-clustering role for Npn-1, as opposed to Npn-1 behaving as an affinity-converting subunit.  相似文献   

6.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

7.
The expression of neuropilin-1 (NRP1), a recently described VEGF and semaphorin receptor expressed by endothelial cells (EC) but some non-EC types as well, was analyzed in osteoblasts in vitro and in vivo. Cultured MC3T3-E1 osteoblasts expressed NRP1 mRNA and bound VEGF(165) but not VEGF(121), characteristic of the VEGF isoform-specific binding of NRP1. These cells did not express VEGFR-1 or VEGFR-2 so that VEGF binding to osteoblasts was strictly NRP1-dependent. In a chick osteocyte differentiation system, NRP1 was expressed by osteoblasts but its expression was absent as the cells matured into osteocytes. Immunohistochemical localization of NRP1 within the developing bones of 36-day-old mice and embryonic Day 17 chicks demonstrated that NRP1 was expressed by osteoblasts migrating alongside invading blood vessels within the metaphysis of the growth plate, as well as by osteoblasts at the developing edge of trabeculae within the marrow cavity. On the other hand, NRP1 was not expressed by osteocytes in either species, consistent with the in vitro results. In addition to osteogenic cells, NRP1 expression by EC was observed throughout the bone. Together these results suggest that NRP1 might have a dual function in bone by mediating osteoblast function directly as well as angiogenesis.  相似文献   

8.
We have previously shown that carboxymethyl dextran benzylamide (CMDB7), a heparin-like molecule, inhibits the growth of tumors xenografted in nude mice, angiogenesis, and metastasis by altering the binding of angiogenic growth factors, including platelet-derived growth factor, transforming growth factor beta, and fibroblast growth factor 2, to their specific receptors. In this study, we explore the effect of CMDB7 on the most specific angiogenic growth factor, vascular endothelial growth factor 165 (VEGF(165)). We demonstrate here that CMDB7 inhibits the mitogenic effect of VEGF(165) on human umbilical vein endothelial cells (HUV-ECs) by preventing the VEGF(165)-induced VEGF receptor-2 (KDR) autophosphorylation and consequently a specific intracellular signaling. In competition experiments, the binding of (125)I-VEGF(165) to HUV-ECs is inhibited by CMDB7 with an IC(50) of 2 microm. Accordingly, CMDB7 inhibits the cross-linking of (125)I-VEGF(165) to the surface of HUV-ECs, causing the disappearance of both labeled complexes, 170-180 and 240-250 kDa. We show that CMDB7 increases the electrophoretic mobility of VEGF(165), thus evidencing formation of a stable complex with this factor. Moreover, CMDB7 reduces the (125)I-VEGF(165) binding to coated heparin-albumin and prevents a heparin-induced increase in iodinated VEGF(165) binding to soluble (125)I-KDR-Fc chimera. Concerning KDR, CMDB7 has no effect on (125)I-KDR-Fc electrophoretic migration and does not affect labeled KDR-Fc binding to coated heparin-albumin. In the presence of VEGF(165), (125)I-KDR-Fc binding to heparin is enhanced, and under these conditions, CMDB7 interferes with KDR binding. These data indicate that CMDB7 effectively inhibits the VEGF(165) activities by interfering with heparin binding to VEGF(165) and VEGF(165).KDR complexes but not by direct interactions with KDR.  相似文献   

9.
Neuroplin-1 (NRP1), a receptor for vascular endothelial growth factor (VEGF) family members, has three distinct extracellular domains, a1a2, b1b2, and c. To determine the VEGF(165) and placenta growth factor 2 (PlGF-2)-binding sites of NRP1, recombinant NRP1 domains were expressed in mammalian cells as Myc-tagged, soluble proteins, and used in co-precipitation experiments with 125I-VEGF165 and 125I-PlGF-2. Anti-Myc antibodies immunoprecipitated 125I-VEGF165 and 125I-PlGF-2 in the presence of the b1b2 but not of the a1a2 and c domains. Neither b1 nor b2 alone was capable of binding 125I-VEGF165. In competition experiments, VEGF165 competed PlGF-2 binding to the NRP1 b1b2 domain, suggesting that the binding sites of VEGF165 and PlGF-2 overlap. The presence of the a1a2 domain greatly enhanced VEGF165, but not PlGF-2 binding to b1b2. Heparin enhanced the binding of both 125I-VEGF165 and 125I-PlGF-2 to the b1b2 domain by 20- and 4-fold, respectively. A heparin chain of at least 20-24 monosaccharides was necessary for binding. In addition, the b1b2 domain of NRP1 could bind heparin directly, requiring heparin oligomers of at least 8 monosaccharide units. It was concluded that an intact b1b2 domain serves as the VEGF165-, PlGF-2-, and heparin-binding sites in NRP1, and that heparin is a critical component for regulating VEGF165 and PlGF-2 interactions with NRP1 by physically interacting with both receptor and ligands.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is a family of glycoproteins with potent angiogenic activity. We reported previously that heparin has an affinity for VEGF165, the major isoform of VEGF, whereas 2-O-desulfated heparin and 6-O-desulfated heparin have weak but significant affinity (Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A. H., and Kimata, K. (2004) J. Biol. Chem. 279, 12346-12354). In this study, we first examined the effect of heparin and modified heparins (completely desulfated N-sulfated heparin, 2-O-desulfated heparin, and 6-O-desulfated heparin) on VEGF165-dependent mitogenic activity and tube formation on type I collagen gels of human umbilical vein endothelial cells. Both were enhanced by heparin, but not by modified heparins, suggesting that both the 2-O-sulfate group of hexuronic acid and the 6-O-sulfation group of N-sulfoglucosamine in heparin/heparan sulfate are necessary for VEGF165 activity. We then examined the activation of VEGF receptor (VEGFR) to understand the mechanism. We have made several new findings; 1) heparin yielded a 1.7-fold enhancement of VEGF165-induced phosphorylation of VEGFR-2; 2) depletion of cell surface heparan sulfate by heparinase/heparitinase treatment and preferential reduction of trisulfated disaccharide units of cell surface HS by sodium chlorate treatment resulted in the reduction of such phosphorylation, suggesting the involvement of a heparin-like domain in the phosphorylation of VEGFR-2; and 3) VEGF121, an isoform without the exon 7-encoded region, which has no capacity to bind to heparin, did not show these effects. It is therefore likely that a heparin-like domain of heparan sulfate/heparin forms a complex with VEGF165 and VEGFR-2 via the exon 7-encoded region, thereby enhancing VEGF165-dependent signaling.  相似文献   

11.
A member of the vascular endothelial growth factor (VEGF) family, VEGF165, regulates vascular endothelial cell functions in autocrine and paracrine fashions in microvessels. Proteoglycans are highly glycosylated poly-anionic macromolecules that influence cellular behaviors such as proliferation and migration by interacting with cytokines/growth factors. In the present study, we investigated the regulation of proteoglycan synthesis by VEGF165 in cultured human brain microvascular endothelial cells. The cells were exposed to recombinant human VEGF165, and the proteoglycans were then characterized using biochemical techniques. VEGF165 treatment increased the accumulation of proteoglycans 1.4- and 1.6-fold in the cell layer and conditioned medium, respectively. This effect resulted from the activation of VEGFR-2, and was mimicked by vammin, a VEGFR-2 ligand from snake venom but not placenta growth factor, which binds specifically to VEGFR-1. VEGF165 stimulated the production and secretion of perlecan, substituted with shorter heparan sulfate side chains, but with unaltered sulfated disaccharide composition. The perlecan secreted by VEGF165-stimulated endothelial cells may be involved in the regulation of cellular behavior during angiogenesis, in diseases of the brain microvessels, and in the maintenance of the endothelial cell monolayer.  相似文献   

12.
Vascular endothelial growth factor B (VEGF-B) is expressed in various tissues, especially strongly in the heart, and binds selectively to one of the VEGF receptors, VEGFR-1. The two splice isoforms, VEGF-B(167) and VEGF-B(186), have identical NH(2)-terminal cystine knot growth factor domains but differ in their COOH-terminal domains which give these forms their distinct biochemical properties. In this study, we show that both splice isoforms of VEGF-B bind specifically to Neuropilin-1 (NRP1), a receptor for collapsins/semaphorins and for the VEGF(165) isoform. The NRP1 binding of VEGF-B could be competed by an excess of VEGF(165). The binding of VEGF-B(167) was mediated by the heparin binding domain, whereas the binding of VEGF-B(186) to NRP1 was regulated by exposure of a short COOH-terminal proline-rich peptide upon its proteolytic processing. In immunohistochemistry, NRP1 distribution was found to be overlapping or adjacent to known sites of VEGF-B expression in several tissues, in particular in the developing heart, suggesting the involvement of VEGF-B in NRP1-mediated signaling.  相似文献   

13.
Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65-75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.  相似文献   

14.
Neuropilins (NRPs) are 130-kDa receptors that bind and respond to the class 3 semaphorin family of axon guidance molecules (SEMAs) and to members of the vascular endothelial growth factor (VEGF) family of angiogenic factors. Two NRPs have been reported so far, NRP1 and NRP2. Unlike NRP1, little is known about NRP2 interactions with its ligands, VEGF165 and SEMA3F. Cell binding studies reveal that VEGF165 and SEMA3F bind NRP2 with similar affinities, 5.2 and 3.9 nM, respectively, and are competitive NRP2 ligands. Immunoprecipitation studies show that the B (b1b2) extracellular domain of NRP2 is sufficient for VEGF165 binding, whereas SEMA3F requires both the A (a1a2) and B domains. To identify residues of B-NRP2 involved in VEGF165 binding, point mutations were introduced by site-directed mutagenesis. VEGF165 is a basic protein. Reduction of the electronegative potential of B-NRP2 by exchanging acidic residues for uncharged alanine (B-NRP2 E284A,E291A) in the 280-290 b1-NRP2 loop resulted in a 2-fold reduction in VEGF165 affinity. Conversely, enhancing the electronegative potential (B-NRP2 R287E,N290D and R287E,N290S) significantly increased VEGF165 affinity for B-NRP2 by 8- and 6.6-fold, respectively. The mutagenesis did not affect SEMA3F/B-NRP2 interactions. These results demonstrate that it is possible to alter VEGF165 affinity for NRP2 without affecting SEMA3F affinity. They also identify NRP2 residues involved in VEGF165 binding and suggest that modifications of B-NRP2 could lead to potentially high affinity selective inhibitors of VEGF165/NRP2 interactions.  相似文献   

15.
We previously demonstrated that a non sulfated analogue of heparin, phenylacetate carboxymethyl benzylamide dextran (NaPaC) inhibited angiogenesis. Here, we observed that NaPaC inhibited the VEGF165 binding to both VEGFR2 and NRP-1 and abolished VEGFR2 activity. Further, we explored the effects of NaPaC on VEGF165 interactions with its receptors, VEGFR2 and NRP-1, co-receptor of VEGFR2. Surface plasmon resonance and affinity gel electrophoresis showed that NaPaC interacted directly with VEGF165, VEGFR2 and NRP-1 but not with heparin-independent factor such as VEGF121. NaPaC completely inhibited the heparin binding to VEGF165, NRP-1 and VEGFR2. We found that NaPaC bound to all three molecules, VEGF165, VEGFR2 and NRP-1, but was more effective in inhibiting heparin binding to VEGF165. These results suggested that heparin binding sites of VEGFR2 and NRP-1 were different from those of VEGF165.  相似文献   

16.
VEGF is fundamental in the development and maintenance of the vasculature. VEGF(165) signaling through VEGF receptor (VEGFR)-2/kinase insert domain receptor (KDR) is a highly regulated process involving the formation of a tertiary complex with glypican (GYP)-1 and neuropilin (NRP)-1. Both VEGF and VEGFR-2 expression are reduced in emphysematous lungs; however, the mechanism of regulation of VEGF(165) signaling through the VEGFR-2 complex in response to cigarette smoke exposure in vivo, and in smokers with and without chronic obstructive pulmonary disease (COPD), is still unknown. We hypothesized that cigarette smoke exposure disrupts the VEGF(165)-VEGFR-2 complex, a potential mechanism in the pathogenesis of emphysema. We show that cigarette smoke exposure reduces NRP-1 and GYP-1 as well as VEGF and VEGFR-2 levels in rat lungs and that VEGF, VEGFR-2, GYP-1, and NRP-1 expression in the lungs of both smokers and patients with COPD are also reduced compared with nonsmokers. Moreover, our data suggest that specific inhibition of VEGFR-2 alone with NVP-AAD777 would appear not to result in emphysema in the adult rat lung. As both VEGF(165) and VEGFR-2 expression are reduced in emphysematous lungs, decreased GYP-1 and NRP-1 expression may yet further disrupt VEGF(165)-VEGFR-2 signaling. Whether or not this by itself is critical for inducing endothelial cell apoptosis and decreased vascularization of the lung seen in emphysema patients is still unclear at present. However, targeted therapies to restore VEGF(165)-VEGFR-2 complex may promote endothelial cell survival and help to ameliorate emphysema.  相似文献   

17.
We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A(165) isoform stimulated MKP-1 expression, whereas the VEGF-A(162) isoform induced the gene to a lesser extent, and the VEGF-A(121) isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.  相似文献   

18.
In a previous study, we showed that in situ injection of glycosaminoglycan mimetics called RGTAs (ReGeneraTing Agents) enhanced neovascularization after skeletal muscular ischemia (Desgranges, P., Barbaud, C., Caruelle, J. P., Barritault, D., and Gautron, J. (1999) FASEB J. 13, 761-766). In the present study, we showed that the RGTA OTR4120 modulated angiogenesis in the chicken embryo chorioallantoic membrane assay, in a dose-dependent manner. We therefore investigated the effect of OTR4120 on one of the most specific angiogenesis-regulating heparin-binding growth factors, vascular endothelial growth factor 165 (VEGF165). OTR4120 showed high affinity binding to VEGF165 (Kd = 2.2 nm), as compared with heparin (Kd = 15 nm), and potentiated the affinity of VEGF165 for VEGF receptor-1 and -2 and for neuropilin-1. In vitro, OTR4120 potentiated VEGF165-induced proliferation and migration of human umbilical vein endothelial cells. In the in vivo Matrigel plug angiogenesis assay, OTR4120 in a concentration as low as 3 ng/ml caused a 6-fold increase in VEGF165-induced angiogenesis. Immunohistochemical staining showed a larger number of well differentiated VEGFR-2-expressing-cells in Matrigel sections of OTR4120-treated plug than in control sections. These findings indicate that OTR4120 enhances the VEGF165-induced angiogenesis and therefore may hold promise for treating disorders characterized by deficient angiogenesis.  相似文献   

19.
Neuropilin-1 (np-1) and neuropilin-2 (np-2) are receptors for axon guidance factors belonging to the class 3 semaphorins. np-1 also binds to the 165-amino acid heparin-binding form of VEGF (VEGF(165)) but not to the shorter VEGF(121) form, which lacks a heparin binding ability. We report that human umbilical vein-derived endothelial cells express the a17 and a22 splice forms of the np-2 receptor. Both np-2 forms bind VEGF(165) with high affinity in the presence of heparin (K(D) 1.3 x 10(-10) m) but not VEGF(121). np-2 also binds the heparin-binding form of placenta growth factor. These binding characteristics resemble those of np-1. VEGF(145) is a secreted heparin binding VEGF form that contains the peptide encoded by exon 6 of VEGF but not the peptide encoded by exon 7, which is present in VEGF(165). VEGF(145) binds to np-2 with high affinity (K(D) 7 x 10(-10) m). Surprisingly, VEGF(145) did not bind to np-1. Indeed, VEGF(145) does not bind to MDA-MB-231 breast cancer cells, which predominantly express np-1. By contrast, VEGF(145) binds to human umbilical vein-derived endothelial cells, which express both np-1 and np-2. The binding of VEGF(165) to porcine aortic endothelial cells expressing recombinant np-2 did not affect the proliferation or migration of the cells. Nevertheless, it is possible that VEGF-induced np-2-mediated signaling will take place only in the presence of other VEGF receptors such as VEGF receptor-1 or VEGF receptor-2.  相似文献   

20.
VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号