首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The differential properties of anion-mediated Fe(3+) release between the N- and C-lobes of transferrins have been a focus in transferrin biochemistry. The structural and kinetic characteristics for isolated lobe have, however, been documented with the N-lobe only. Here we demonstrate for the first time the quantitative Fe(3+) release kinetics and the anion-binding structure for the isolated C-lobe of ovotransferrin. In the presence of pyrophosphate, sulfate, and nitrilotriacetate anions, the C-lobe released Fe(3+) with a decelerated rate in a single exponential progress curve, and the observed first order rate constants displayed a hyperbolic profile as a function of the anion concentration. The profile was consistent with a newly derived single-pathway Fe(3+) release model in which the holo form is converted depending on the anion concentration into a "mixed ligand" intermediate that releases Fe(3+). The apo C-lobe was crystallized in ammonium sulfate solution, and the structure determined at 2.3 A resolution demonstrated the existence of a single bound SO(4)(2-) in the interdomain cleft, which interacts directly with Thr(461)-OG1, Tyr(431)-OH, and His(592)-NE2 and indirectly with Tyr(524)-OH. The latter three groups are Fe(3+)-coordinating ligands, strongly suggesting the facilitated Fe(3+) release upon the anion occupation at this site. The SO(4)(2-) binding structure supported the single-pathway kinetic model.  相似文献   

2.
The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA–nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA–X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe3+ sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion.  相似文献   

3.
The rate constants for the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis were determined by using a pre-steady-state kinetic approach. kon and koff for complex-formation and dissociation were 1 X 10(6)M-1 X S-1 and 8 X 10(-4)S-1 respectively. Ki was calculated as the ratio koff/kon = 8 X 10(-10)M, the binding of eglin to elastase was reversible and the inhibition mechanism was of the fully competitive type. The mechanistic properties of the system and the biological significance of the rate constants are discussed.  相似文献   

4.
Serum transferrin is the protein that transports ferric ion through the bloodstream and is thus a potential target for iron chelation therapy. However, the release of iron from transferrin to low-molecular-weight chelating agents is usually quite slow. Thus a better understanding of the mechanism for iron release is important to assist in the design of more effective agents for iron removal. This paper describes the effect of sulfonate anions on the rates of iron removal from C-terminal monoferric transferrin by acetohydroxamic acid, deferiprone, nitrilotriacetic acid (NTA), and diethylenetriaminepentaacetic acid at 25 °C in 0.1 M N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (Hepes) buffer at pH 7.4. These ligands remove iron via a combination of pathways that show saturation and first order dependence on the ligand concentration. The kinetic effects of the anions methanesulfonate, methylenedisulfonate, and ethylenedisulfonate were evaluated. All these anions increase the overall rates of iron release, presumably by binding to an allosteric anion binding site on the protein. The two disulfonates produce a larger acceleration in iron release than the monosulfonate. More detailed studies using methylenedisulfonate show that this anion accelerates the rate of iron release via the saturation pathway. The addition of methylenedisulfonate results in the appearance of a large saturation pathway for iron release by NTA, which otherwise removes iron by a simple first-order process. The sulfonate group was selected for these studies because it represents an anionic functional group that can be covalently linked to a therapeutic ligand to accelerate iron release in vivo. The current studies indicate that the binding of the sulfonates to the allosteric site on the protein is quite weak, so that one would not expect a significant acceleration in iron release at clinically relevant ligand concentrations.  相似文献   

5.
A novel kinetic approach was used to measure monovalent anion binding to better define the mechanistic basis for competition between stilbenedisulfonates and transportable anions on band 3. An anion-induced acceleration in the release of 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) from its complex with band 3 was measured using monovalent anions of various size and relative affinity for the transport site. The K1/2 values for anion binding were determined and correlated with transport site affinity constants obtained from the literature and the dehydrated radius of each anion. The results show that anions with ionic radii of 120-200 pm fall on a well-defined correlation line where the ranking of the K1/2 values matched the ranking of the transport site affinity constants (thiocyanate < nitrate approximately bromide < chloride < fluoride). The K1/2 values for the anions on this line were about 4-fold larger than expected for anion binding to inhibitor-free band 3. Such a lowered affinity can be explained in terms of allosteric site-site interactions, since the K1/2 values decreased with increasing anionic size. In contrast, iodide, with an ionic radius of about 212 pm, had a 10-fold lower affinity than predicted by the correlation line established by the smaller monovalent anions. These results indicate that smaller monovalent anions have unobstructed access to the transport site within the band 3 / DBDS binary complex, while iodide experiences significant steric hindrance when binding. The observation of steric hindrance in iodide binding to the band 3 / DBDS binary complex, but not in the binding of smaller monovalent anions, suggests that the stilbenedisulfonate binding site is located at the outer surface of an access channel leading to the transport site.  相似文献   

6.
Pyrophosphate-induced iron release from diferric ovotransferrin follows biphasic kinetics in the pH range from 6.6 to 8.6 except at pH 8.0 where the kinetics become monophasic. The rates of formation of the four molecular species, Fe2OT, FeOTN, FeOTC, and ApoOT, were studied by urea gel electrophoresis and the four microscopic rate constants were calculated at various pH values. Below pH 8.0, these intrinsic rate constants for iron release from Fe2OT follow the order k2N greater than k1N greater than k2C greater than k1C. Each constant diminishes almost proportionally with an increase in pH with the faster rate constants being affected more by the fall in hydrogen ions than the slower ones. Around pH 8.0 the four rates are approximately equal, resulting in monophasic kinetics. However, the rate constants from the C-site become faster than that from the N-site at pH above 8.2. At low pH, there is a marked preference for iron to be released from the N-site rather than from the C-site and such preference becomes less distinct as pH increases. A rather weak positive cooperativity between the two sites is demonstrated in pH between 6.8 and 7.8. The ligand responsible for the transition from biphasic to monophasic kinetics at pH 8.0 is not known. It is possible that there are different anions such as [CO3(2-)] and [HCO3-] at the two iron-binding sites, which might explain the preferential rates of iron release from these sites during protonation.  相似文献   

7.
The crystal structure of the iron-free (apo) form of the Haemophilus influenzae Fe(3+)-binding protein (hFbp) has been determined to 1.75 A resolution. Information from this structure complements that derived from the holo structure with respect to the delineation of the process of iron binding and release. A 21 degrees rotation separates the two structural domains when the apo form is compared with the holo conformer, indicating that upon release of iron, the protein undergoes a change in conformation by bending about the central beta-sheet hinge. A surprising finding in the apo-hFbp structure was that the ternary binding site anion, observed in the crystals as phosphate, remained bound. In solution, apo-hFbp bound phosphate with an affinity K(d) of 2.3 x 10(-3) M. The presence of this ternary binding site anion appears to arrange the C-terminal iron-binding residues conducive to complementary binding to Fe(3+), while residues in the N-terminal binding domain must undergo induced fit to accommodate the Fe(3+) ligand. These observations suggest a binding process, the first step of which is the binding of a synergistic anion such as phosphate to the C-terminal domain. Next, iron binds to the preordered half-site on the C-terminal domain. Finally, the presence of iron organizes the N-terminal half-site and closes the interdomain hinge. The use of the synergistic anion and this iron binding process results in an extremely high affinity of the Fe(3+)-binding proteins for Fe(3+) (nFbp K'(eff) = 2.4 x 10(18) M(-1)). This high-affinity ligand binding process is unique among the family of bacterial periplasmic binding proteins and has interesting implications in the mechanism of iron removal from the Fe(3+)-binding proteins during FbpABC-mediated iron transport across the cytoplasmic membrane.  相似文献   

8.
The bacterial enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) catalyzes the unprecedented transfer and isomerization of the ribosyl moiety of S-adenosylmethionine (AdoMet) to a modified tRNA nucleoside in the biosynthesis of the hypermodified nucleoside queuosine. The complexity of this reaction makes it a compelling problem in fundamental mechanistic enzymology, and as part of our mechanistic studies of the QueA-catalyzed reaction, we report here the elucidation of the steady-state kinetic mechanism. Bi-substrate kinetic analysis gave initial velocity patterns indicating a sequential mechanism, and provided the following kinetic constants: K (M)(tRNA)= 1.9 +/- 0.7 microM and K (M)(AdoMet)= 98 +/- 5.0 microM. Dead-end inhibition studies with the substrate analogues S-adenosylhomocysteine and sinefungin gave competitive inhibition patterns against AdoMet and noncompetitive patterns against preQ(1)-tRNA(Tyr), with K(i) values of 133 +/- 18 and 4.6 +/- 0.5 microM for sinefungin and S-adenosylhomocysteine, respectively. Product inhibition by adenine was noncompetitive against both substrates under conditions with a subsaturating cosubstrate concentration and uncompetitive against preQ(1)-tRNA(Tyr) when AdoMet was saturating. Inhibition by the tRNA product (oQ-tRNA(Tyr)) was competitive and noncompetitive against the substrates preQ(1)-tRNA(Tyr) and AdoMet, respectively. Inhibition by methionine was uncompetitive versus preQ(1)-tRNA(Tyr), but noncompetitive against AdoMet. However, when methionine inhibition was investigated at high AdoMet concentrations, the pattern was uncompetitive. Taken together, the data are consistent with a fully ordered sequential bi-ter kinetic mechanism in which preQ(1)-tRNA(Tyr) binds first followed by AdoMet, with product release in the order adenine, methionine, and oQ-tRNA. The chemical mechanism that we previously proposed for the QueA-catalyzed reaction [Daoud Kinzie, S., Thern, B., and Iwata-Reuyl, D. (2000) Org. Lett. 2, 1307-1310] is consistent with the constraints imposed by the kinetic mechanism determined here, and we suggest that the magnitude of the inhibition constants for the dead-end inhibitors may provide insight into the catalytic strategy employed by the enzyme.  相似文献   

9.
Kinetics and mechanism of anionic ligand binding to carbonic anhydrase   总被引:1,自引:0,他引:1  
The kinetics of complex formation between Co(II)-carbonic anhydrase B and the anions cyanate, thiocyanate and cyanide has been studied at different pH values employing temperature-jump relaxation spectrometry. Formation of the 1:1 complex occurs via binding of the deprotonated state of the anion to an acidic state of the enzyme. The determined formation rate constants range from 10(8) to 3 X 10(9) M-1 s-1 and are two to three orders of magnitude higher than the value estimated for a ligand coordination to the central Co2+, based on a solvate substitution mechanism. These kinetic results strongly indicate that the deprotonated anion binds to an unoccupied coordination position of the protein-bound heavy metal ion in the form of an addition reaction. Upon binding of the anion, the coordination number of the Co2+ in the acidic state of the enzyme is increased from four to five. In the case of cyanide, a 2:1 anion complex is also formed. The formation rate constant is 5 X 10(5) M-1 s-1 which provides good evidence that this binding process is controlled by a solvate substitution mechanism.  相似文献   

10.
The ferric binding protein (FbpA) transports iron across the periplasmic space of certain Gram-negative bacteria and is an important component involved in iron acquisition by pathogenic Neisseria spp. (Neisseria gonorrheae and Neisseria meningitidis). Previous work has demonstrated that the synergistic anion, required for tight Fe(3+) sequestration by FbpA, also plays a key role in inserting Fe(3+) into the FbpA binding site. Here, we investigate the iron release process from various forms of holo-FbpA, Fe(3+)FbpA-X, during the course of a chelator competition reaction using EDTA and Tiron. Fe(3+)FbpA-X represents the protein assembly complex with different synergistic anions, X = PO(4)(3)(-) and NTA. Stepwise mechanisms of Fe(3+) release are proposed on the basis of kinetic profiles of these chelator competition reactions. Fe(3+)FbpA-PO(4) and Fe(3+)FbpA-NTA react differently with EDTA and Tiron during the Fe(3+)-exchange process. EDTA replaces PO(4)(3)(-) and NTA from the first coordination shell of Fe(3+) and acts as a synergistic anion to give a spectroscopically distinguishable intermediate, Fe(3+)FbpA-EDTA, prior to pulling Fe(3+) out of the protein. Tiron, on the other hand, does not act as a synergistic anion but is a more efficient competing chelator as it removes Fe(3+) from FbpA at rate much faster than EDTA. These results reaffirm the contribution of the synergistic anion to the FbpA iron transport process as the anion, in addition to playing a facilitative role in iron binding, appears to have a "gatekeeper" role, thereby modulating the Fe(3+) release process.  相似文献   

11.
Human serum transferrin (hTF) is a bilobal iron-binding and transport protein that carries iron in the blood stream for delivery to cells by a pH-dependent mechanism. Two iron atoms are held tightly in two deep clefts by coordination to four amino acid residues in each cleft (two tyrosines, a histidine, and an aspartic acid) and two oxygen atoms from the "synergistic" carbonate anion. Other residues in the binding pocket, not directly coordinated to iron, also play critical roles in iron uptake and release through hydrogen bonding to the liganding residues. The original crystal structures of the iron-loaded N-lobe of hTF (pH 5.75 and 6.2) revealed that the synergistic carbonate is stabilized by interaction with Arg-124 and that both the arginine and the carbonate adopt two conformations (MacGillivray, R. T. A., Moore, S. A., Chen, J., Anderson, B. F., Baker, H., Luo, Y. G., Bewley, M., Smith, C. A., Murphy, M. E., Wang, Y., Mason, A. B., Woodworth, R. C., Brayer, G. D., and Baker, E. N. (1998) Biochemistry 37, 7919-7928). In the present study, we show that the two conformations are also found for a structure at pH 7.7, indicating that this finding was not strictly a function of pH. We also provide structures for two single point mutants (Y45E and L66W) designed to force Arg-124 to adopt each of the previously observed conformations. The structures of each mutant show that this goal was accomplished, and functional studies confirm the hypothesis that access to the synergistic anion dictates the rate of iron release. These studies highlight the importance of the arginine/carbonate movement in the mechanism of iron release in the N-lobe of hTF. Access to the carbonate via a water channel allows entry of protons and anions, enabling the attack on the iron.  相似文献   

12.
The kinetics of pyrophosphate-induced iron release from diferric ovotransferrin were studied spectrophotometrically at 37 degrees C in 0.1 M HEPES, pH 7.0. At high pyrophosphate concentrations, the kinetics are biphasic, indicating that the rates of iron release from the two, presumably noninteracting iron-binding sites of ovotransferrin are different. The pseudo-first-order rate constants for iron release from both the fast and slow sites exhibit a hyperbolic dependence on pyrophosphate concentrations. The data suggest that pyrophosphate forms complexes with the two iron-binding sites of ovotransferrin prior to iron removal. The stability constants of the complex formed with the fast site (Keqf) and slow site (Keqs) are 8.3 M-1 and 40.4 M-1, respectively. The first-order rate constants for the dissociation of ferric-pyrophosphate from the fast site (k2f) and the slow site (k2s) are 0.062 and 0.0044 min-1, respectively. Results from urea gel electrophoresis studies suggest that iron is released at a much faster rate from the N-terminal binding site of ovotransferrin. At high pyrophosphate concentration, only C-monoferric-ovotransferrin is detected during the course of iron release. At low pyrophosphate concentration, however, a detectable amount of N-monoferric-ovotransferrin is accumulated. This result is consistent with the kinetic finding that the site with a higher k2 (0.062 min-1) has a lower affinity toward pyrophosphate (Keq = 8.3 M-1) whereas the site with a lower k2 (0.0044 min-1) has a higher affinity for pyrophosphate (Keq = 40.4 M-1).  相似文献   

13.
The linkage between the four-step binding of oxygen and the binding of heterotropic anionic ligands in hemoglobin was investigated by accurately measuring and analyzing the oxygen equilibrium curves of human adult hemoglobin in the presence and absence of various concentrations of one or two of the following materials: chloride (Cl-), 2,3-diphosphoglycerate (DPG), and inositol hexaphosphate (IHP). Each equilibrium curve was analyzed according to the Adair equation to evaluate the four-step oxygen equilibrium constants (Adair constants) and the median oxygen pressure. The binding constants of the anions for the molecular species of hemoglobin carrying j oxygen molecules, Hb(O2)j(j=0,1,...,4), were evaluated from the dependences of the Adair constants and the median oxygen pressure on the anion concentration by introducing a model which takes the competitive binding of Cl- and DPG or IHP into account. Assumptions made in the model are: (a) the hemoglobin molecule has two oxygen-linked binding sites for Cl- which are equivalent and independent and (b) no Cl- can be bound to hemoglobin to which DPG or IHP is already bound and vice versa. Thus, we could obtain values for the intrinsic binding constants of Cl- and DPG, i.e., the constants in the absence of other competitive anions. For IHP, only the binding constants and apparent binding constants for Hb and Hb(O2)2 were obtained. Values of the Cl- binding constants and apparent binding constants for DPG and IHP, i.e., the binding constants in the presence of Cl- for Hb and Hb(O2)4, were in reasonable agreement with literature values. From the binding constants we calculated anion binding curves for Hb(O2)j(J=0,1,...,4), the number of anions bound to Hb(O2)J, And the relationship between fractional anion saturation of hemoglobin and fractional oxygen saturation. The numbers of released anions are not uniform with respect to oxygenation step. This non-uniformity is the reason for the changes in the shape of the oxygen equilibrium curve with anion concentration changes and for the non-uniform dependences of the Adair constants on anion concentration, and also results in non-linear relations between anion saturation and oxygen saturation. The anion binding constants and various binding properties of the anions derived from those constants are consistent with those observed by other investigators using different techniques, indicating that the present model describes the oxygen-linked competitive anion binding well.  相似文献   

14.
The effect of anions on Na+-cotransport of succinate, lactate, glucose, and phenylalanine was studied under voltage clamped conditions in brush-border membrane vesicles prepared from rabbit renal cortex. The initial rate of succinate uptake varied by an order of magnitude depending on the anion: the highest rates were obtained with fluoride and gluconate, and the lowest with iodide. The anion sequence corresponded with the inverse of the anion hydration energies. The kinetics of succinate uptake were measured in the presence of fluoride and chloride. There was no difference in the maximal rates of uptake, but the Kt in fluoride (0.30 mM) was less than half that in chloride (0.70 mM), i.e. Cl- behaved as a competitive inhibitor of succinate transport with a Ki of 150 mM. The uptake of L-lactate, D-glucose and L-phenylalanine was less sensitive to anions, and there was no correlation with hydration energies. We conclude that the anion effects on sugar and amino acid uptakes measured under open-circuit conditions are largely due to variations in membrane potential, but in the case of the dicarboxylate transporter anions behave as weak competitive inhibitors. The specificity of the anion inhibition suggests that the dicarboxylate binding sites have a weak field strength relative to water.  相似文献   

15.
We have identified and characterized potent and specific inhibitors of geranylgeranyl-protein transferase type I (GGPTase I), as well as dual inhibitors of GGPTase I and farnesyl-protein transferase. Many of these inhibitors require the presence of phosphate anions for maximum activity against GGPTase I in vitro. Inhibitors with a strong anion dependence were competitive with geranylgeranyl pyrophosphate (GGPP), rather than with the peptide substrate, which had served as the original template for inhibitor design. One of the most effective anions was ATP, which at low millimolar concentrations increased the potency of GGPTase I inhibitors up to several hundred-fold. In the case of clinical candidate l-778,123, this increase in potency was shown to result from two major interactions: competitive binding of inhibitor and GGPP, and competitive binding of ATP and GGPP. At 5 mm, ATP caused an increase in the apparent K(d) for the GGPP-GGPTase I interaction from 20 pm to 4 nm, resulting in correspondingly tighter inhibitor binding. A subset of very potent GGPP-competitive inhibitors displayed slow tight binding to GGPTase I with apparent on and off rates on the order of 10(6) m(-)1 s(-)1 and 10(-)3 s(-)1, respectively. Slow binding and the anion requirement suggest that these inhibitors may act as transition state analogs. After accounting for anion requirement, slow binding, and mechanism of competition, the structure-activity relationship determined in vitro correlated well with the inhibition of processing of GGPTase I substrate Rap1a in vivo.  相似文献   

16.
Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin‐1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin. Manduca sexta (MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl‐lobe adopts a novel orientation and contacts with the amino‐lobe. The structure revealed coordination of a single Fe3+ ion in the amino‐lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.  相似文献   

17.
Effect of monovalent anions on the mechanism of phenol hydroxylase   总被引:3,自引:0,他引:3  
The mechanism of phenol hydroxylase (EC 1.14.13.7) has been studied by steady state and rapid reaction kinetic techniques. Both techniques give results consistent with the Bi Uni Uni Bi ping-pong mechanism proposed for other flavin-containing aromatic hydroxylases. The enzyme binds phenolic substrate and NADPH in that order, followed by reduction of the flavin and release of NADP+. A transient charge transfer complex between reduced enzyme and NADP+ can be detected. Molecular oxygen then reacts with the reduced enzyme-substrate complex. Two to three flavin-oxygen intermediates can be detected in the oxidative half-reaction depending on the substrate, provided monovalent anions are present. Oxygen transfer is complete with the formation of the second intermediate. Based on its UV absorption spectrum and on the fact that oxygen transfer has taken place, the last of these intermediates is presumably the flavin C(4a)-hydroxide. Monovalent anions are uncompetitive inhibitors of phenol hydroxylase. The mechanistic step most affected is the dehydration of the flavin C(4a)-hydroxide to give oxidized enzyme. Chloride also kinetically stabilizes the blue flavin semiquinone of phenol hydroxylase during photoreduction. These data suggest binding of monovalent anions results in stabilization of a proton on the N(5) position of the flavin.  相似文献   

18.
The unique structural feature of the dilysine (Lys206-Lys296) pair in the transferrin N-lobe (hTF/2N) has been postulated to serve a special function in the release of iron from the protein. These two lysines, which are located in opposite domains, hydrogen bond to each other in the iron-containing hTF/2N at neutral pH but are far apart in the apo-form of the protein. It has been proposed that charge repulsion resulting from the protonation of the dilysines at lower pH may be the trigger to open the cleft and facilitate iron release. The fact that the dilysine pair is positively charged and resides in a location close to the metal-binding center has also led to the suggestion that the dilysine pair is an anion-binding site for chelators. The present report provides comprehensive evidence to confirm that the dilysine pair plays this dual role in modulating release of iron. When either of the lysines is mutated to glutamate or glutamine or when both are mutated to glutamate, release of iron is much slower compared to the wild-type protein. This is due to the fact that the driving force for cleft opening is absent in the mutants or is converted to a lock-like interaction (in the case of the K206E and K296E mutants). Direct titration of the apo-proteins with anions as well as anion-dependent iron release studies show that the dilysine pair is part of an active anion-binding site which exists with the Lys296-Tyr188 interaction as a core. At this site, Lys296 serves as the primary anion-binding residue and Tyr188 is the main reporter for electronic spectral change, with smaller contributions from Lys206, Tyr85, and Tyr95. In iron-loaded hTF/2N, anion binding becomes invisible as monitored by UV-vis difference spectra since the spectral reporters Tyr188 and Tyr95 are bound to iron. Our data strongly support the hypothesis that the apo-hTF/2N exists in equilibrium between the open and closed conformations, because only in the closed form is Lys296 in direct contact with Tyr188. The current findings bring together observations, ideas, and experimental data from a large number of previous studies and shed further light on the detailed mechanism of iron release from the transferrin N-lobe. In iron-containing hTF/2N, Lys296 may still function as a target to introduce an anion (or a chelator) near to the iron-binding center. When the pH is lowered, the protonation of carbonate (synergistic anion for metal binding) and then the dilysine pair form the driving force to loosen the cleft, exposing iron; the nearby anion (or chelator) then binds to the iron and releases it from the protein.  相似文献   

19.
In the catalytic chain of Escherichia coli aspartate transcarbamylase, Tyr240 helps stabilize the T-state conformation by an intrachain hydrogen bond to Asp271. Changes in kinetic characteristics of ATCase that result from disruption of this bond by site-specific mutation of Tyr240----Phe have been investigated by isotopic exchanges at chemical equilibrium. The Tyr240----Phe (Y240F) mutation caused the rate of the [32P] carbamyl phosphate (C-P) in equilibrium Pi exchange to decrease by 2-8-fold, without altering the [14C]Asp in equilibrium N-carbamyl-L-aspartate (C-Asp) rate. The mutation also caused the S0.5 and Hill nH values to decrease in virtually every substrate saturation experiment. Upon increasing the concentrations of the C-P,Pi or C-P,C-Asp reactant-product pairs, inhibition effects observed with the C-P in equilibrium Pi exchange for wild-type enzyme were not apparent with the Y240F mutant enzyme. In contrast, upon increasing the concentrations of the Asp,C-Asp and Asp,Pi pairs, inhibition effects on C-P in equilibrium Pi observed with wild-type enzyme became stronger with the Y240F mutant enzyme. These data indicate that the Tyr240----Phe mutation alters the kinetic mechanism in two different ways: on the reactant side, C-P binding prior to Asp shifts from preferred to compulsory order, and, on the product side, C-Asp and Pi release changes from preferred to nearly random order. These conclusions were also confirmed on a quantitative basis by computer simulations and fitting of the data, which also produced an optimal set of rate constants for the Y240F enzyme. The Arrhenius plot for wild-type holoenzyme was biphasic, but those for catalytic subunits and Y240F enzyme were linear (monophasic). Taken together, the data indicate that the Tyr240----Phe mutation destabilizes the T-state and shifts the equilibrium for the T-R allosteric transition toward the R-state by increasing the rate of T----R conversion.  相似文献   

20.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号