首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the relationship between 30-second anaerobic power and body composition by performance level in elite Judoists. During a 3-month period, 10 male Korean Judo national team athletes (NT), 26 male university varsity team athletes (VT), and 28 male junior varsity team athletes (JT) were assessed for 30-second anaerobic power and body composition at the Youngin University. Anaerobic power was measured using a 30-second Wingate test. Body composition was assessed via bioelectric impedance analysis in standardized conditions using BioSpace (Korean)-specific prediction formulas. All testing occurred at the beginning of the winter nonseason period but excluded a brief weight-loss period before the competition phase. Anaerobic power measures were significantly greater (p < 0.05) in NT and VT than in JT. Fat-free mass (FFM), muscle mass (MM), and total body water in JT were also greater than in VT and JT (p < 0.05). Muscle mass in VT was significantly lower than in NT (p < 0.05). Fat-free mass in NT was strongly correlated to mean and peak anaerobic power (r = 0.77, p = 0.009; r = 0.87, p < 0.001, respectively). Varsity team athletes also indicated a moderate association between FFM and peak and mean anaerobic power (r = 0.63, p < 0.001; r = 0.48, p = 0.013, respectively). However, relationship between FFM and anaerobic power was not statistically significantly correlated in JT (r = 0.14, p = 0.470; r = 0.23, p = 0.232, separately). In conclusion, our data indicated that anaerobic power is closely correlated with increase in FFM and MM and was different dependent among performance levels. Further research in the field is warranted to elucidate the Judo-specific relationship between FFM and performance.  相似文献   

2.
The aim of this study was to evaluate the reliability and validity of a repeated modified agility test (RMAT) to assess anaerobic power and explosiveness. Twenty-seven subjects (age: 20.2 ± 0.9 years, body mass: 66.1 ± 6.0 kg, height: 176 ± 6 cm, and body fat: 11.4 ± 2.6%) participated in this study. After familiarization, subjects completed the RMAT consisting of 10 × 20-m maximal running performances (moving in forward, lateral, and backward) with ~25-second recovery between each run. Ten subjects performed the RMAT twice separated by at least 48 hours to evaluate relative and absolute reliability and usefulness of the test. The criterion validity of the RMAT was determined by examining the relationship between RMAT indices and the Wingate anaerobic test (WAT) performances and both vertical and horizontal jumps. Reliability of the total time (TT) and peak time (PT) of the RMAT was very good, with intraclass correlation coefficient > 0.90 and SEM < 5% and low bias. The usefulness of TT and PT of the RMAT was rated as "good" and "OK," respectively. The TT of the RMAT had significant correlations with the WAT (peak power: r = -0.44; mean power: r = -0.72), vertical jumps (squat jump: r = -0.50; countermovement jump: r = -0.61; drop jump (DJ): r = -0.55; DJ with dominant leg: r = -0.72; DJ with nondominant leg: r = -0.53) and 5 jump test (r = -0.56). These findings suggest that the RMAT is a reliable and valid test for assessing anaerobic power and explosiveness in multisprint sport athletes. Consequently, the RMAT is an easily applied, inexpensive field test and can provide coaches and strength and conditioning professionals with relevant information concerning the choice and the efficacy of training programs.  相似文献   

3.
The current investigation aimed to develop a valid specific field test to evaluate anaerobic physical performance in Aerobic Gymnastics athletes. We first designed the Specific Aerobic Gymnast Anaerobic Test (SAGAT), which included gymnastics-specific elements performed in maximal repeated sprint fashion, with a total duration of 80-90 s. In order to validate the SAGAT, three independent sub-studies were performed to evaluate the concurrent validity (Study I, n=8), the reliability (Study II, n=10) and the sensitivity (Study III, n=30) of the test in elite female athletes. In Study I, a positive correlation was shown between lower-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.69, CI: -0.94 to 0.03 and Peak power: p = 0.02, r = -0.72, CI: -0.95 to -0.04) and between upper-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.67, CI: -0.94 to 0.02 and Peak power: p = 0.03, r = -0.69, CI: -0.94 to 0.03). Additionally, plasma lactate was similarly increased in response to SAGAT (p = 0.002), lower-body Wingate Test (p = 0.021) and a simulated competition (p = 0.007). In Study II, no differences were found between the time to complete the SAGAT in repeated trials (p = 0.84; Cohen’s d effect size = 0.09; ICC = 0.97, CI: 0.89 to 0.99; MDC95 = 0.12 s). Finally, in Study III the time to complete the SAGAT was significantly lower during the competition cycle when compared to the period before the preparatory cycle (p < 0.001), showing an improvement in SAGAT performance after a specific Aerobic Gymnastics training period. Taken together, these data have demonstrated that SAGAT is a specific, reliable and sensitive measurement of specific anaerobic performance in elite female Aerobic Gymnastics, presenting great potential to be largely applied in training settings.  相似文献   

4.
The 30-second, all-out Wingate test evaluates anaerobic performance using an upper or lower body cycle ergometer (cycle Wingate test). A recent study showed that using a modified electromagnetically braked elliptical trainer for Wingate testing (EWT) leads to greater power outcomes because of larger muscle group recruitment. The main purpose of this study was to modify an elliptical trainer using an easily understandable mechanical brake system instead of an electromagnetically braked modification. Our secondary aim was to determine a proper test load for the EWT to reveal the most efficient anaerobic test outcomes such as peak power (PP), average power (AP), minimum power (MP), power drop (PD), and fatigue index ratio (FI%) and to evaluate the retest reliability of the selected test load. Delta lactate responses (ΔLa) were also analyzed to confirm all the anaerobic performance of the athletes. Thirty healthy and well-trained male university athletes were selected to participate in the study. By analysis of variance, an 18% body mass workload yielded significantly greater test outcomes (PP = 19.5 ± 2.4 W·kg, AP = 13.7 ± 1.7 W·kg, PD = 27.9 ± 5 W·s, FI% = 58.4 ± 3.3%, and ΔLa = 15.4 ± 1.7 mM) than the other (12-24% body mass) tested loads (p < 0.05). Test and retest results for relative PP, AP, MP, PD, FI%, and ΔLa were highly correlated (r = 0.97, 0.98, 0.94, 0.91, 0.81, and 0.95, respectively). In conclusion, it was found that the mechanically braked modification of an elliptical trainer successfully estimated anaerobic power and capacity. A workload of 18% body mass was optimal for measuring maximal and reliable anaerobic power outcomes. Anaerobic testing using an EWT may be more useful to athletes and coaches than traditional cycle ergometers because a greater proportion of muscle groups are worked during exercise on an elliptical trainer.  相似文献   

5.
Previous research has related the results of tests of maximum aerobic capacity to performance for endurance athletes. These results are often only able to predict the running velocity of races such as the marathon. This investigation sought to determine the absolute V[Combining Dot Above]O2 at various respiratory exchange ratio (RER) values (0.85, 0.90, 0.95, 1.0, 1.05, and 1.10) by using a third-order polynomial regression to model the physiological responses for V[Combining Dot Above]O2 and RER obtained from an assessment of maximum aerobic capacity. The V[Combining Dot Above]O2 determined was subsequently correlated to race performance. The participants in the study were selected from a population of National Collegiate Athletic Association Division 1 crosscountry runners (male n = 7, female n = 7, age 20.5 ± 0.9 years; height 170.3 ± 8.2 cm; weight 59.7 ± 8.7 kg; V[Combining Dot Above]O2max 57.0 ± 7.8 ml O2·kg·min). Third-order regression analysis resulted in strong curve fitting between the variables (r = 0.949 ± 0.03). Partial correlations (controlled for weight) were used to assess the relationship between oxygen consumption at the desired points of RER and race performance. The partial correlations revealed that the absolute oxygen consumptions at all RER points of interest were significantly correlated to race performance (r > 0.740, p < 0.01). There was a significant difference in the strength of the correlations for the points RER 0.95 (t = 2.68957, p = 0.01), 1.0 (t = 2.18516, p = 0.03), and 1.05 (t = 1.85668, p = 0.04) and the correlations found for RER 0.85. After converting the oxygen consumption at the RER points to estimated horizontal running speeds, only the estimate at RER 1.05 was not statistically different from the actual speed achieved in the culminating XC race. It can be suggested based upon these results that coaches of collegiate crosscountry runners who engage in metabolic testing of athletes examine the estimated running pace at RER 1.05 to gain an insight into a runner's potential.  相似文献   

6.
The present study was undertaken to assess the relationship between the mechanical power developed during new anaerobic power test and muscular fiber distribution. Ten track and field male athletes were used as subjects, whose muscle fiber composition (m. vastus lateralis) varied from 25 to 58 fast twitch (FT) fibers. The test consisted of measuring the flight time with a special timer during 60 s continuous jumping. A formula was derived to allow the calculation of mechanical power during a certain period of time (e.g., in the present study every 15 s during 60 s of jumping performance). The relationship between the mechanical power for the first 15 s period correlated best with fast twitch (FT) fiber distribution (r = 0.86, p less than 0.005). However, the power output during the successive 15 s periods demonstrated lower correlation with FT, and this relationship became statistically non-significant after 30 s of work. The sensitivity to fatigue of the test was supported by the relationship observed between the decrease of power during 60 s jumping performance and the percentage of FT fibers (r = 0.73, p less than 0.01). Thus, the present findings suggest that muscular performance, as determined by the new jumping test, is influenced by skeletal muscle fiber composition. The new test, which primarily evaluates maximal short term muscular power, also proved sensitive in assessing fatigue patterns during 60 s of strenuous work.  相似文献   

7.
Although many studies have been focused on soccer athletes, no comprehensive studies have been conducted on adolescent soccer athletes in the United States. Therefore, the purpose of this study was to quantify the physiological and sport-specific skill characteristics of Olympic Developmental Program (ODP) soccer athletes by age group and game experience. Following written, informed consent, 59 male athletes (age = 14.6 +/- 2.0 years; wt = 60.5 +/- 1.4 kg; ht = 172.4 +/- 1.2 cm) completed a battery of tests to determine aerobic power (VO(2)max), heart rate (HR(max)), ventilation (VE(max)), respiratory exchange ratio (RER), anaerobic threshold (AT), blood pressure (BP(rest/max)), anaerobic power/capacity [peak power (PP), mean power (MP), total work output (TWO), fatigue index (FI)], leg power [vertical squat jump (VJS), countermovement jump (VJC)], body composition [percent body fat (%BF), lean body mass (LBM)], joint range of motion (trunk, back, hip, knee, and ankle), and agility/sport-specific skills (T-test, line drill test, juggling test, Johnson wall volley, and modified-Zelenka circuit). Factor analyses with subsequent multivariate analyses of variance (MANOVAs) indicated significant main effects across age (p = 0.0001) but not by game experience (p = 0.82). Older athletes exhibited greater height, weight, LBM, VE(max), Time(max), PP, TWO, and VSJ values than younger athletes. Although not significant, there were differences with increasing age in the agility tests (T-test, wall volley, and juggling test). In conclusion, improvements in anaerobic power, agility, and sport-specific skill should be addressed at this developmental level of competition.  相似文献   

8.
The purpose of this study was to investigate whether modifying the standing long jump test would enhance its ability to be a better predictor of anaerobic performance compared to other common anaerobic power tests. Three modified box long jump (MBLJ) tests were performed using 1, 2, or 3 boxes. Subjects consisted of 38 healthy males (age, 21.7 +/- 1.7 years) who performed all the testing procedures. All 3 variations of the MBLJ test showed significant correlations (p < 0.05) with the vertical jump (VJ); standing long jump (SLJ); 50-, 100-, 200-, 400-m runs; long jump; triple jump; and shot put ability (r = 0.362-0.891). All 3 variations of the MBLJ test also showed significant correlations with isokinetic peak torque knee extension and flexion, Wingate mean power (W), and Wingate mean power per kilogram (W/kg) (r = 0.357-0.504). Generally, correlations of the 3 MBLJ tests were stronger than correlations between VJ and SLJ ability to the same measure of power. Generally, the 3-box MBLJ tests showed stronger correlations with measures of power than the 1- and 2-box MBLJ tests. Multiple linear regression models indicated that the 3-box MBLJ test is a major predictor of the track and field performances compared to the other tests of anaerobic power. Along with other independent variables, the 3-box MBLJ test explained 55%, 44%, 51%, 61%, 52%, and 72% of the variance of 50-, 100-, 200-, and 400-m runs; long jump; and triple jump performance, respectively. In conclusion, due to the significant correlations between the MBLJ tests, especially the 3-box version, and other measures of power, these tests are appropriate for testing lower body power.  相似文献   

9.
A large number of team sports require athletes to repeatedly produce maximal or near maximal sprint efforts of short duration interspersed with longer recovery periods of submaximal intensity. This type of team sport activity can be characterized as prolonged, high-intensity, intermittent running (PHIIR). The primary purpose of the present study was to determine the physiological factors that best relate to a generic PHIIR simulation that reflects team sport running activity. The second purpose of this study was to determine the relationship between common performance tests and the generic PHIIR simulation. Following a familiarization session, 16 moderately trained (VO2max = 40.0 +/- 4.3 ml x kg(-1) x min(-1)) women team sport athletes performed various physiological, anthropometrical, and performance tests and a 30-minute PHIIR sport simulation on a nonmotorized treadmill. The mean heart rate and blood lactate concentration during the PHIIR sport simulation were 164 +/- 6 b x min(-1) and 8.2 +/- 3.3 mmol x L(-1), respectively. Linear regression demonstrated significant relationships between the PHIIR sport simulation distance and running velocity attained at a blood lactate concentration of 4 mmol x L(-1) (LT) (r = 0.77, p < 0.05), 5 x 6-second repeated cycle sprint work (r = 0.56, p < 0.05), 30-second Wingate test (r = 0.61, p < 0.05), peak aerobic running velocity (Vmax) (r = 0.69, p < 0.05), and Yo-Yo Intermittent Recovery Test (Yo-Yo IR1) distance (r = 0.50, p < 0.05), respectively. These results indicate that an increased LT is associated with improved PHIIR performance and that PHIIR performance may be monitored by determining Yo-Yo IR1 performance, 5 x 6-second repeated sprint cycle test work, 30-second Wingate test performance, Vmax, or LT. We suggest that training programs should focus on improving both LT and Vmax for increasing PHIIR performance in moderately trained women. Future studies should examine optimal training methods for improving these capacities in team sport athletes.  相似文献   

10.
The aims of this study were to document the effect terrain has on the physiological responses and work demands (power output) of riding a typical mountain bike cross-country course under race conditions. We were particularly interested in determining whether physiological measures relative to mass were better predictors of race performance than absolute measures. Eleven A-grade male cross-country mountain bike riders (VO2max 67.1 +/- 3.6 ml x kg(-1) x min(-1)) performed 2 tests: a laboratory-based maximum progressive exercise test, and a 15.5-km (six 2.58-km laps) mountain bike cross-country time trial. There were significant differences among the speed, cadence, and power output measured in each of 8 different terrain types found in the cross-country time trial course. The highest average speed was measured during the 10-15% downhill section (22.7 +/- 2.6 km x h(-1)), whereas the cadence was highest in the posttechnical flat sections (74.3 +/- 5.6 rpm) and lowest on the 15-20% downhill sections (6.4 +/- 12.1 rpm). The highest mean heart rate (HR) was obtained during the steepest (15-20% incline) section of the course (179 +/- 8 b x min(-1)), when the power output was greatest (419.8 +/- 39.7 W). However, HR remained elevated relative to power output in the downhill sections of the course. Physiological measures relative to total rider mass correlated more strongly to average course speed than did absolute measures (peak power relative to mass r = 0.93, p < 0.01, vs. peak power r = 0.64, p < 0.05; relative VO2max r = 0.80, p < 0.05, vs. VO2max r = 0.66, p < 0.05; power at anaerobic threshold relative to mass r = 0.78, p < 0.05, vs. power at anaerobic threshold r = 0.5, p < 0.05). This suggests that mountain bike cross-country training programs should focus upon improving relative physiological values rather than focusing upon maximizing absolute values to improve performance.  相似文献   

11.
The purpose of this study was to compare the Wingate cycling and Bosco repeated jumps anaerobic tests. Eleven men (21.36 +/- 1.6 years; 179.1 +/- 9.3 cm; 78.7 +/- 11.0 kg) and 9 women (21.89 +/- 3.66 years; 171.8 +/- 10.0 cm; 75.9 +/- 21.4 kg), all university athletes, volunteered to participate. Subjects performed each test in random order. The tests consisted of a 30-second Wingate test and a 60-second Bosco test. The Wingate test was conducted using a Monark cycle ergometer and the Bosco test was conducted on a force platform. Following the performance of each test, peak lactate concentrations were determined. Average and peak power values were statistically greater in men and on the Bosco test. Peak lactate values were statistically greater in men but did not differ based on test. Correlations between peak lactate concentrations between tests and lactate values with peak or average power were not statistically significant. The relationship between peak power between tests was statistically significant among men, but not women. The results of the study indicated that the Bosco and Wingate tests, which both measure anaerobic characteristics, appear to measure different aspects of anaerobic power and capacity. The Bosco test also may be inappropriate for athletes who are not well trained in jumping.  相似文献   

12.
The present study examined the factors contributing to performance of a backward overhead medicine ball throw (B-MBT) across 2 types of athletes. Twenty male volleyball players (jump athletes) and 20 wrestlers (nonjump athletes) were evaluated on 4 measures of power, including B-MBT, chest medicine ball throw (C-MBT), countermovement vertical jump (CMJ), and power index (PI). The athletes also completed 3 measures of strength: a 1-repetition-maximum (1RM) bench press (BP), a 1RM leg press (LP), and combined BP + LP strength. Jump athletes demonstrated greater absolute scores for CMJ, C-MBT, and B-MBT (p < 0.05), whereas nonjump athletes demonstrated greater strength scores for BP and for BP + LP (p < 0.05). When performances were examined on a relative basis, jump athletes achieved superior scores for C-MBT (p < 0.05), whereas nonjump athletes had greater scores for BP, LP, and BP + LP (p < 0.05). For both groups, B-MBT had strong correlations with PI (r = 0.817 [jump] and 0.917 [nonjump]), whereas for C-MBT, only nonjump athletes demonstrated a strong correlation (r = 0.842). When expressed in relative terms, B-MBT was strongly correlated with C-MBT (r = 0.762 [jump] and 0.835 [nonjump]) and CMJ (r = 0.899 [jump] and 0.945 [nonjump]). Only nonjump athletes demonstrated strong correlations with strength for absolute LP (r = 0.801) and BP + LP (r = 0.810) strength. The interaction of upper- and lower-body strength and power in the performance of a B-MBT appears complex, with the contributing factors differing for athletes with divergent skill sets and performance demands.  相似文献   

13.
Anaerobic exercise is involved in many recreational and competitive sport activities. This study first established regression equations to predict maximal anaerobic power and then cross-validated these prediction equations. Using stepwise multiple regression analysis prediction equations for relative (watts per kilogram of body mass) and absolute (watts) mean and peak anaerobic power using the 30-second Wingate Test as the power measure were determined for 40 boys (age, 11-13 years). Percentage of body fat, free-fat weight, midthigh circumference, and 30-m dash were the independent predictive variables with the generated regression equations subsequently cross-validated using 20 different boys (age, 11-13 years). Significant correlations (Pearson r) were found for the cross-validation subjects between the measured power outputs and predicted power outputs for relative mean power (r = 0.48, p < 0.05), absolute mean power (r = 0.77, p < 0.01), and absolute peak power (r = 0.76, p < 0.01). Using paired t-tests, no significant mean differences (p > 0.05) were found for the same subjects between actual and predicted power outputs for relative mean power, absolute mean power, and absolute peak power. Prediction of maximal anaerobic power from selected anthropometric measurements and 30-m dash appears tenable in 11-13-year-old boys and can be accomplished in a simple cost- and time-effective manner.  相似文献   

14.
The aim of the study was to assess fitness profile of elite Croatian female taekwondo athletes and to determine which physical, physiological and motor characteristics differentiate mostly the successful from the less successful fighters. Thirteen national taekwondo champions were divided into two groups according to their senior international competitive achievements. Physiological characteristics, including maximal oxygen uptake (VO2max), were assessed during a continuous progressive treadmill test. The measured motor abilities included explosive and elastic leg strength, maximal strength, muscular endurance, anaerobic alactic power, agility and flexibility. Differences between the successful and less successful athletes were determined using independent t-test. Even though the differences were not statistically significant, the successful athletes had somewhat less fat (2.3%) and were taller by 5.8 cm. The successful athletes achieved significantly higher maximum running speed (15.8 +/- 0.5 versus 14.9 +/- 0. 7 km h(-1); p < 0.05), their ventilatory anaerobic threshold was significantly higher (41.4 +/- 4.1 versus 37.6 +/- 2.0 ml kg(-1) min(-1); p < 0.05) at a significantly lower heart rate (166.8 +/- 6.8 versus 171.0 +/- 8.2 beats min(-1); p < 0.05) than in the less successful athletes. Significant differences were also found in three tests of explosive power (p < 0.05), anaerobic alactic power (p < 0.01), and lateral agility (p < 0.05). The performance of taekwondo female athletes primarily depends on the anaerobic alactic power, explosive power expressed in the stretch-shortening cycle movements, agility and aerobic power.  相似文献   

15.
Ice hockey is a game that relies heavily on both aerobic and anaerobic energy production systems as players perform in various game situations. However, we found no studies evaluating the relationship between a player's physical condition and individual success in games throughout a competitive hockey season. The purpose of this study was to determine the relationship between a player's aerobic fitness (VO(2)max), blood lactate, and percent body fat to his total minutes played during a season (Tmin) and net scoring chances (SCn). Players' (N = 29) preseason VO(2)max, lactate at the fourth stage of an incremental treadmill test (Lac 4), and percent body fat values from the 1999- 2001 National Collegiate Athletic Association Division I hockey seasons were archived and retrieved for this study. The players' Tmin and SCn were used as the on-ice performance variables and were compared with their fitness measures. Lactate at 4th treadmill stage (r = 0.41, p < 0.03) and percent body fat (r = 0.39, p < 0.03) but not VO(2)max (r = 0.20, p < 0.24) were significantly related to Tmin. Both Lac 4 and percent body fat were entered into a stepwise regression model that accounted for 25% of the variance in Tmin among players (p < 0.02). Both VO(2)max (r = 0.41, p < 0.03) and Lac 4 (r = 0.33, p < 0.05) were significantly related to the players' SCn, but percent body fat was not (r = 0.10, p < 0.57). Only VO(2)max significantly predicted the players' SCn, accounting for 17% of the variance. These findings suggest a relationship between a player's conditioning level and on-ice performance. Our results support the value of implementing seasonal physiological testing, which will help strength and conditioning coaches make individualized modifications to a player's fitness regimens in an effort to improve specific physiological attributes.  相似文献   

16.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

17.
The aim of this study was to examine in team sports athletes the relationship between repeated sprint ability (RSA) indices and both aerobic and anaerobic fitness components. Sixteen team-sport players were included (age, 23.4 ± 2.3 years; weight, 71.2 ± 8.3 kg; height, 178 ± 7 cm; body mass index, 22.4 ± 2 kg · m−2; estimated VO2max, 54.16 ± 3.5 mL · kg−1 · min−1). Subjects were licensed in various team sports: soccer (n = 8), basketball (n = 5), and handball (n = 3). They performed 4 tests: the 20 m multi-stage shuttle run test (MSRT), the 30-s Wingate test (WingT), the Maximal Anaerobic Shuttle Running Test (MASRT), and the RSA test (10 repetitions of 30 m shuttle sprints (15 + 15 m with 180° change of direction) with 30 s passive recovery in between). Pearson''s product moment of correlation among the different physical tests was performed. No significant correlations were found between any RSA test indices and WingT. However, negative correlations were found between MASRT and RSA total sprint time (TT) and fatigue index (FI) (r = -0.53, p < 0.05 and r = -0.65, p < 0.01, respectively). No significant relationship between VO2max and RSA peak sprint time (PT) and total sprint time (TT) was found. Nevertheless, VO2max was significantly correlated with the RSA FI (r = -0.57, p < 0.05). In conclusion, aerobic fitness is an important factor influencing the ability to resist fatigue during RSA exercise. Our results highlighted the usefulness of MASRT, in contrast to WingT, as a specific anaerobic testing procedure to identify the anaerobic energy system contribution during RSA.  相似文献   

18.
The purpose of this study was to compare the effects of a ballistic resistance training program of Olympic lifts with those of a traditional resistance training program of power lifts on vertical jump improvement in male high school athletes. Twenty-seven male student athletes were recruited from a high school football program at a small, rural school in the Southeast. The subjects were divided into an Olympic training group (OT, n = 11), a power training group (PT, n = 10), and a control group (n = 6). Analysis of variance was used to determine whether a significant mean difference existed among groups on vertical jump improvement after 8 weeks of group-specific training. Effect size of vertical jump improvement between groups, and correlations between strength and vertical jump performance, were also examined. There was no significant mean difference (p >or= 0.05) among OT, PT, and control groups, but large effect sizes between OT and control (d = 1.06) and PT and control (d = 0.94) demonstrate that both OT and PT are effective in improving vertical jump performance in male high school athletes. Moderate to high correlations were noted between squat score and vertical jump after adjusting for body weight (r = 0.42) and between power clean and vertical jump after adjusting for body weight (r = 0.75). Findings from the current study indicate that Olympic lifts as well as power lifts provide improvement in vertical jump performance and that Olympic lifts may provide a modest advantage over power lifts for vertical jump improvement in high school athletes.  相似文献   

19.
The purpose of this investigation was to examine the potential strength, power, and anthropometric contributors to vertical jump performances that are considered specific to volleyball success: the spike jump (SPJ) and counter-movement vertical jump (CMVJ). To assess the relationship among strength, power, and anthropometric variables with CMVJ and SPJ, a correlation and regression analysis was performed. In addition, a comparison of strength, power, and anthropometric differences between the seven best subjects and the seven worst athletes on the CMVJ test and SPJ test was performed. When expressed as body mass relative measures, moderate correlations (0.53-0.65; p < or = 0.01) were observed between the 1RM measures and both relative CMVJ and relative SPJ. Very strong correlations were observed between relative (absolute height-standing reach height) depth jump performance and relative SPJ (0.85; p < or = 0.01) and relative CMVJ (0.93; p 相似文献   

20.
Elite soccer referees usually achieve the peak of their officiating careers at an average age that is considerably older than that observed in competitive matched soccer players. As ageing has been reported to negatively affect physical performance, the aim of this study was to investigate the effect of ageing on fitness performance in elite-level soccer referees. Thirty-six elite-level soccer referees were grouped into young (Y, n = 12), average (A, n = 14), and old (O, n = 10) groups, according to their age and observed for field test performance (countermovement jump [CMJ], 50-m and 200-m sprints, and 12-minute running for distance). Results showed a significant age effect on CMJ (r = -0.52, p < 0.001), 200 m (r = 0.51, p < 0.001), and 12-minute time trial running (r = -0.52, p < 0.001). Y jumped higher than A and O groups (p < 0.05) and were faster than O over 200 m (p < 0.05). No group effect was observed for 12-minute run and 50-m performance (p > 0.05), respectively. Sixteen of the 36 referees were further examined for selected physiological variables and grouped into 2 equal (n = 8) age groups (young and old, Y1 and O1, respectively). Vo(2)max was higher in Y1 (p < 0.05), but O1 attained performances similar to Y1 running at selected blood lactate speeds (4 mmol L(-1), p > 0.05). Although older referees demonstrated acceptable fitness levels, younger officials should ensure that they develop appropriate levels of aerobic and anaerobic fitness to be able to match the demands placed upon them while refereeing throughout their careers. To promote this, fitness test standards should be age related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号