首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The etiology of repetitive stress injuries in tendons has not been clearly identified. While minor trauma has been implicated as an inciting factor, the precise magnitude and structural level of tissue injury that initiates this degenerative cascade has not been determined. The purpose of this study was to determine if isolated tendon fibril damage could initiate an upregulation of interstitial collagenase (MMP13) mRNA and protein in tendon cells associated with the injured fibril(s). Rat tail tendon fascicles were subjected to in vitro tensile loading until isolated fibrillar damage was documented. Once fibrillar damage occurred, the tendons were immediately unloaded to 100g and maintained at that displacement for 24h under tissue culture conditions. In addition, non-injured tendon fascicles were maintained under unloaded (stress-deprived) conditions in culture for 24h to act as positive controls. In situ hybridization or immunohistochemistry was then performed to localize collagenase mRNA expression or protein synthesis, respectively. Fibrillar damage occurred at a similar stress (41.13+/-5.94MPa) and strain (13.24+/-1.94%) in the experimental tendons. In situ hybridization and immunohistochemistry demonstrated an upregulation of interstitial collagenase mRNA and protein, respectively, in only those cells associated with the damaged fibril(s). In the control (stress-deprived) specimens, collagenase mRNA expression and protein synthesis were observed throughout the fascicle. The results suggest that isolated fibrillar damage and the resultant upregulation of collagenase mRNA and protein in this damaged area occurs through a mechanobiological understimulation of tendon cells. This collagenase production may weaken the tendon and put more of the extracellular matrix at risk for further damage during subsequent loading.  相似文献   

2.
Overuse Achilles tendinopathy is a common and challenging problem in sports medicine. Little is known about the etiology of this disorder, and the development of a good animal model for overuse tendinopathy is essential for advancing insight into the disease mechanisms. Our aim was to test a previously proposed rat model for Achilles tendon overuse. Ten adult male Sprague-Dawley rats ran on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 wk and were compared with 12 control rats. Histological, mechanical, and gene-expression changes were measured on the Achilles tendons after the intervention, and local tendon glucose-uptake was measured before and after the intervention with positron emission tomography. No differences were detected between runners and controls in tissue histology or in glucose uptake, indicating that tendon pathology was not induced. Greater tendon tissue modulus (P < 0.005) and failure stress/body weight (P < 0.02) in runners compared with controls further supported that tendons successfully adapted to uphill running. Several genes of interest were regulated after 12 wk of running. Expression of collagen III and insulin-like growth factor I was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-β1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading.  相似文献   

3.
An elevation of the intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) induces terminal differentiation in neuroblastoma (NB) cells in culture; however, genetic alterations during differentiation have not been fully identified. To investigate this, we used Mouse Genome U74A microarray containing approximately 6000 functionally characterized genes to measure changes in gene expression in murine NB cells 30 min and 4, 24, and 72 h after treatment with cAMP-stimulating agents. Based on the time of increase in differentiated functions and their status (reversible versus irreversible) after treatment with cAMP-stimulating agents, the induction of differentiation in NB cells was divided into three distinct phases: initiation (about 4 h after treatment when no increase in differentiated functions is detectable), promotion (about 24 h after treatment when an increase in differentiated functions occurs, but they are reversible upon the removal of cAMP), and maintenance (about 72 h after treatment when differentiated functions are maximally expressed, but they are irreversible upon the removal of cAMP). Results showed that alterations in expression of genes regulating cell growth, proliferation, apoptosis, and necrosis occurred during cAMP-induced differentiation of NB cells. Genes that were upregulated during the initiation, promotion, or maintenance phase were called initiators, promoters, or maintainers of differentiation. Genes that were downregulated during the initiation, promotion, or maintenance phase were called suppressors of initiation, promotion, or maintenance phase. Genes regulating growth may act as initiators, promoters, maintainers, or suppressors of these phases. Genes regulating cell proliferation may primarily act as suppressors of promotion. Genes regulating cell cycle may behave as suppressors of initiation or promotion, whereas those regulating apoptosis and necrosis may act as initiators or suppressors of initiation or promotion. The fact that genetic signals for differentiation occurred 30 min after treatment with cAMP, whereas cell-cycle genes were downregulated at a later time, suggests that decision for NB cells to differentiate is made earlier and not at the cell-cycle stage, as commonly believed.  相似文献   

4.
C S Enwemeka 《Tissue & cell》1991,23(2):173-190
The ultrastructures of 33 rabbit calcaneal tendons were studied to determine (1) whether vacuolar fibrils are present in three regions of tendons undergoing normal healing after tenotomy and repair, and (2) to stimulate collagen synthesis via functional loading, and hence determine the effect of loading on the presence of vacuolar fibrils in healing tendons. In all the loaded tendons, electron microscopy revealed membrane-bound collagen fibril equivalents in sections of neotendon obtained from the site of tenotomy, and in sections of tendon segments proximal and distal to the site of surgery. Similar vacuolar fibrils were visualized in sections of the proximal and distal segments of the non-loaded regenerating tendons, and also in sections of neotendons formed at the site of tenotomy after 12 and 15 days of healing without functional loading. No such fibrils were visualized in the non-tenotomized normal control tendons. These findings indicate that chemical agents and disease are not necessary to induce the appearance of intracytoplasmic fibrils in vivo and that functional loading augments the presence of fibril-bearing vacuoles in regenerating tendons.  相似文献   

5.
Mechanical stress is an important modulator of connective tissue repair. However, the effects on tendon healing are very poorly defined, preventing optimal use of mechanical stress. We hypothesized that early voluntary exercise initially retards tendon repair but results in a faster recovery rate at longer term. Male Wistar rats were injured by a collagenase injection in the Achilles tendon, and exercise was voluntarily performed on a running wheel. We observed the persistent presence of neutrophils in injured tendons of rats that began exercise immediately after the trauma [injured + early exercise (Inj+EEx)]. Early exercise also increased the concentration of ED1(+) macrophages in injured tendons after 3 and 7 days compared with ambulatory injured rats (Inj). Similar results were obtained with the subset of ED2(+) macrophages in the tendon core 3 days after the collagenase injection. Furthermore, collagen content returned to normal values more rapidly in the Inj+EEx tendons than in the Inj group, but this was not associated with an increase in cell proliferation. Surprisingly, Inj+EEx tendons roughly displayed lower stiffness and force at rupture point relative to Inj tendons at day 28. Injured tendons of rats that began exercise only from day 7 had better mechanical properties than those of early-exercised rats 28 days postinjury. We speculate that the persistence of the inflammatory response and undue mechanical loading in the Inj+EEx tendons led to fibrosis and a loss of tendon function.  相似文献   

6.
Flexor tendon repair in zone II is complicated by adhesions that impair normal postoperative gliding. Transforming growth factor-beta (TGF-beta) is a family of growth factors that has been implicated in scar formation. The TGF-beta family of proteins binds to three distinct classes of membrane receptors, termed RI, RII, and RIII. In this study, we analyzed the temporal and spatial distribution of TGF-beta receptor isoforms (RI, RII, and RIII) in a rabbit zone II flexor tendon wound healing model.Twenty-eight adult New Zealand White rabbit forepaws underwent isolation of the middle digit flexor digitorum profundus tendon in zone II. The tendons underwent transection in zone II and immediate repair. The tendons were harvested at increasing time points: 1, 3, 7, 14, 28, and 56 days postoperatively (n = 4 at each time point). The control flexor tendons were harvested without transection and repair (n = 4). Immunohistochemical analysis was used to detect the expression patterns for TGF-beta receptors RI, RII, and RIII.Immunohistochemical staining of the transected and repaired tendons demonstrated up-regulation of TGF-beta RI, RII, and RIII protein levels. TGF-beta receptor production in the experimental group (transection and repair) was concentrated in the epitenon and along the repair site. Furthermore, the TGF-beta receptor expression levels peaked at day 14 and decreased by day 56 postoperatively. In contrast, minimal receptor expression was observed in the untransected and unrepaired control tendons.These data provide evidence that (1) TGF-beta receptors are up-regulated after injury and repair; (2) peak levels of TGF-beta receptor expression occurred at day 14 and decreased by day 56 after wounding and repair; and (3) both the tendon sheath and epitenon have the highest receptor expression, and both may play critical roles in flexor tendon wound healing. Understanding the up-regulation of TGF-beta isoforms and the up-regulation of their corresponding receptors during flexor tendon wound healing provides new targets for biomolecular modulation of postoperative scar formation.  相似文献   

7.
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise.  相似文献   

8.
Mechanobiology of tendon   总被引:9,自引:0,他引:9  
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.  相似文献   

9.
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.  相似文献   

10.
11.
Cytokinins have been implicated in developmental and growth processes in plants including cell division, chloroplast biogenesis, shoot meristem initiation and senescence. The regulation of these processes requires changes in cytokinin-responsive gene expression. Here, we induced the expression of a bacterial isopentenyl transferase gene, IPT, in transgenic Arabidopsis thaliana seedlings to study the regulation of genome-wide gene expression in response to endogenous cytokinin. Using MPSS (massively parallel signature sequencing) we identified 823 and 917 genes that were up- and downregulated, respectively, following 24 h of IPT induction. When comparing the response to cytokinin after 6 and 24 h, we identified different clusters of genes showing a similar course of regulation. Our study provides researchers with the opportunity to rapidly assess whether genes of interest are regulated by cytokinins.  相似文献   

12.
13.
14.
A precise analysis of the mechanical response of collagen fibrils in tendon tissue is critical to understanding the ultrastructural mechanisms that underlie collagen fibril interactions (load transfer), and ultimately tendon structure–function. This study reports a novel experimental approach combining macroscopic mechanical loading of tendon with a morphometric ultrascale assessment of longitudinal and cross-sectional collagen fibril deformations. An atomic force microscope was used to characterize diameters and periodic banding (D-period) of individual type-I collagen fibrils within murine Achilles tendons that were loaded to 0%, 5%, or 10% macroscopic nominal strain, respectively. D-period banding of the collagen fibrils increased with increasing tendon strain (2.1% increase at 10% applied tendon strain, p < 0.05), while fibril diameter decreased (8% reduction, p < 0.05). No statistically significant differences between 0% and 5% applied strain were observed, indicating that the onset of fibril (D-period) straining lagged macroscopically applied tendon strains by at least 5%. This confirms previous reports of delayed onset of collagen fibril stretching and the role of collagen fibril kinematics in supporting physiological tendon loads. Fibril strains within the tissue were relatively tightly distributed in unloaded and highly strained tendons, but were more broadly distributed at 5% applied strain, indicating progressive recruitment of collagen fibrils. Using these techniques we also confirmed that collagen fibrils thin appreciably at higher levels of macroscopic tendon strain. Finally, in contrast to prevalent tendon structure–function concepts data revealed that loading of the collagen network is fairly homogenous, with no apparent predisposition for loading of collagen fibrils according to their diameter.  相似文献   

15.
16.
Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.  相似文献   

17.
Terminal sterilization of tendon allografts with high dose gamma irradiation has deleterious effects on tendon mechanical properties and stability after implantation. Our goal is to minimize these effects with radio protective methods. We previously showed that radio protection via combined crosslinking and free radical scavenging maintained initial mechanical properties of tendon allografts after irradiation at 50 kGy. This study further evaluates the tissue response and simulated mechanical degradation of tendons processed with radio protective treatment, which involves crosslinking in 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide followed by soaking in an ascorbate/riboflavin-5-phosphate solution. Control untreated and treated tendons were irradiated at 50 kGy and implanted in New Zealand White rabbit knees within the joint capsule for four and 8 weeks. Tendons were also exposed to cyclic loading to 20 N at one cycle per 12 s in a collagenase solution for 150 cycles, followed by tension to failure. Control irradiated tendons displayed increased degradation in vivo, and failed prematurely during cyclic processing at an average of 25 cycles. In contrast, radio protected irradiated tendons displayed greater stability following implantation over 8 weeks, and possessed strength at 59 % of native tendons and modulus equivalent to that of native tendons after cyclic loading in collagenase. These results suggest that radio protective treatment improves the strength and the stability of tendon allografts.  相似文献   

18.
19.
20.
Trauma by suturing tendon form areas devoid of cells termed “acellular zones” in the matrix. This study aimed to characterise the cellular insult of suturing and acellular zone formation in mouse tendon. Acellular zone formation was evaluated using single grasping sutures placed using flexor tendons with time lapse cell viability imaging for a period of 12 h. Both tension and injury were required to induce cell death and cell movement in the formation of the acellular zone. DNA fragmentation studies and transmission electron microscopy indicated that cells necrosed.Parallel in vivo studies showed that cell-to-cell contacts were disrupted following grasping by the suture in tensioned tendon. Without tension, cell death was lessened and cell-to-cell contacts remained intact. Quantitative immunohistochemistry and 3D cellular profile mapping of wound healing markers over a one year time course showed that acellular zones arise rapidly and showed no evidence of healing whilst the wound healing response occurred in the surrounding tissues. The acellular zones were also evident in a standard modified “Kessler” clinical repair. In conclusion, the suture repair of injured tendons produces acellular zones, which may potentially cause early tendon failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号