首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relationship between a carotenoid profile and gene expression for carotenoid cleavage dioxygenases, three citrus varieties that exhibit different 9-cis-violaxanthin levels in their juice sacs, Satsuma mandarin (Citrus unshiu Marc.; a variety accumulating a low level of 9-cis-violaxanthin), Valencia orange (Citrus sinensis Osbeck; variety accumulating a high level of 9-cis-violaxanthin), and Lisbon lemon (Citrus limon Burm.f.; a variety accumulating an undetectable level of 9-cis-violaxanthin) were used. Three cDNAs (CitCCD1, CitNCED2, and CitNCED3) were cloned. The recombinant CitCCD1 protein cleaved beta-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9-10 and 9'-10' positions and 9-cis-violaxanthin at the 9'-10' position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11-12 position to form xanthoxin, a precursor of abscisic acid (ABA). The gene expression of CitCCD1 increased in the flavedos and juice sacs of the three varieties during maturation. In Satsuma mandarin, the gene expression of CitNCED2 and CitNCED3 increased noticeably, accompanying a massive accumulation of ABA in the flavedo and juice sacs. In Valencia orange, the gene expression of CitNCED3 increased with a slight elevation of the ABA level in the flavedo, whereas neither the gene expression of CitNCED2 nor the ABA level increased noticeably in the juice sacs. In Lisbon lemon, the gene expression of CitNCED2 increased remarkably, accompanying increases in the ABA level in the flavedo and juice sacs. These results suggest that, in the juice sacs, the efficient cleavage reaction for ABA synthesis reduces the 9-cis-violaxanthin level in Satsuma mandarin and Lisbon lemon, whereas the low cleavage reaction maintains the predominant 9-cis-violaxanthin accumulation in Valencia orange.  相似文献   

2.
3.
Zhang L  Ma G  Shirai Y  Kato M  Yamawaki K  Ikoma Y  Matsumoto H 《Planta》2012,236(4):1315-1325
In the present study, two LCYb genes (CitLCYb1 and CitLCYb2) were isolated from Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck) and Lisbon lemon (Citrus limon Burm.f.) and their functions were analyzed by the color complementation assay in lycopene-accumulating E. coli cells. The results showed that CitLCYb1 and CitLCYb2 shared high identity at the amino acid level among the three citrus varieties. The N-terminal region of the two proteins encoded by CitLCYb1 and CitLCYb2 was predicted to contain a 51-residue chloroplastic transit peptide, which shared low similarity. In Satsuma mandarin, the secondary structures of the CitLCYb1 and CitLCYb2 encoding proteins without the transit peptide were quite similar. Moreover, functional analysis showed that both enzymes of CitLCYb1 and CitLCYb2 participated in the formation of β-carotene, and when they were co-expressed with CitLCYe, α-carotene could be produced from lycopene in E. coli cells. However, although CitLCYb2 could convert lycopene to α-carotene in E. coli cells, its extremely low level of expression indicated that CitLCYb2 did not participate in the formation of α-carotene during the green stage in the flavedo. In addition, the high expression levels of CitLCYb1 and CitLCYb2 during the orange stage played an important role in the accumulation of β,β-xanthophylls in citrus fruits. The results presented in this study might contribute to elucidate the mechanism of carotenoid accumulation in citrus fruits.  相似文献   

4.
5.
Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, high performance liquid chromatography (HPLC) and real-time polymerase chain reaction (PCR) were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in fresh flavedo, juice sacs and leaves of Valencia orange during fruit maturation. Violaxanthin and lutein mainly accumulated in fruit (flavedo and juice sacs) and leaves (young and mature), respectively, accounting for nearly 79 %, 57 %, 53 % and 70 % of corresponding total carotenoids in February. Violaxanthin content quickly began to increase in flavedo in December, but the increase in juice sacs began later in January. In mature leaves, lutein content was three times that in young leaves; α-carotene and β-carotene were also much higher in mature leaves than in flavedo or juice sacs. Generally most of the carotenoid biosynthesis gene members were expressed at higher levels in flavedo than in juice sacs, and the expression of some continued to increase in flavedo during fruit maturation. All CHYB members expressed at high levels and had similar patterns in juice sacs. Interestingly, the capsanthin capsorubin synthase (CCS) members had similar expression levels and patterns in flavedo and juice sacs. Differences in gene expression between leaf and fruit tissues were noted, pointing to some tissue specificity for certain members of the gene families associated with carotenogenesis. The expression patterns of these 23 citrus carotenoid biosynthesis gene members were also compared with their expression patterns in other plants. Taken together, these first-hand expression data will be useful to define the tissue-specific roles of each gene member in accumulation of different carotenoids in citrus leaves and maturing fruits.  相似文献   

6.
Allopolyploidy is known to induce novel patterns of gene expression and often gives rise to new phenotypes. Here we report on the first attempt to relate phenotypic inheritance in an allotetraploid somatic hybrid with gene expression. Carotenoid compounds in the fruit pulp of the two parental species and the hybrid were evaluated quantitatively by HPLC. Only very low levels of β-carotene and β-cryptoxanthin were observed in Citrus limon, while β-cryptoxanthin was a major component of C. reticulata, which also displayed high levels of phytoene, phytofluene, β-carotene, lutein, zeaxantin and violaxanthin. Total carotenoid content in mandarin juice sacs was 60 times greater than that in lemon. The allotetraploid hybrid produced all the same compounds as mandarin but at very low levels. Transgressive concentration of abscisic acid (ABA) was observed in the somatic hybrid. Real-time RT-PCR of total RNA from juice sacs was used to study expression of seven genes (CitDxs, CitPsy, CitPds, CitZds, CitLcy-b, CitChx-b, and CitZep) of the carotenoid biosynthetic pathway and two genes (CitNced1 and CitNced2) involved in abscisic acid synthesis from carotenoid. Gene expression was significantly higher for mandarin than lemon for seven of the nine genes analyzed. Lemon under expression was partially dominant in the somatic hybrid for three upstream steps of the biosynthetic pathway, particularly for CitDxs. Transgressive over expression was observed for the two CitNced genes. A limitation of the upstream steps of the pathway and a downstream higher consumption of carotenoids may explain the phenotype of the somatic hybrid.  相似文献   

7.
Clementine ( Citrus reticulata [Hort.] Ex. Tanaka cv. Oroval) is a self-incompatible mandarin with a slow rate of fruit growth and high percentage of fruit abscission. Seedless Satsuma ( Citrus unshiu [Mak] Marc. cv. Clausellina) shows natural parthenocarpy and higher fruit set. Application of 25 μg fruit−1 of paclobutrazol (PP333), an inhibitor of gibberellin biosynthesis, reduced the rate of growth and accelerated fruit abscission in both varieties. In contrast, gibberellin A3 (GA3) stimulated fruit growth only in the self-incompatible mandarin. Clementine fruits, in the absence of pollination, showed an approximately 2-fold transient increase in the free abscisic acid (ABA) content shortly after petal fall. In Satsuma, a very small accumulation of ABA was detected. Paclobutrazol treatment induced a 3-fold increase in ABA in Satsuma fruits but did not substantially affect the pattern of ABA accumulation in Clementine. In this variety, GA3 suppressed the ABA increase observed in untreated fruits. These effects were observed 24 h after treatment. However, in Satsuma fruits, the effect of GA3 on the ABA content was negligible. In addition, a comparative analysis of growing and non-growing fruits of Clementine showed that ABA, on a per unit weight basis, was always higher in the non-growing fruits. Treatment with 85 μM fluridone, an inhibitor of carotenoid biosynthesis and thus indirectly of ABA, delayed fruit abscission in Clementine, but also decreased fruit growth. Collectively, these observations indicate a relationship between high ABA content and a reduced rate of fruit growth and an acceleration of fruit abscission.  相似文献   

8.
Cara Cara is a spontaneous bud mutation of Navel orange (Citrus. sinensis L. Osbeck) characterized by developing fruits with a pulp of bright red coloration due to the presence of lycopene. Peel of mutant fruits is however orange and indistinguishable from its parental. To elucidate the basis of lycopene accumulation in Cara Cara, we analyzed carotenoid profile and expression of three isoprenoid and nine carotenoid genes in flavedo and pulp of Cara Cara and Navel fruits throughout development and maturation. The pulp of the mutant accumulated high amounts of lycopene, but also phytoene and phytofluene, from early developmental stages. The peel of Cara Cara also accumulated phytoene and phytofluene. The expression of isoprenoid genes and of carotenoid biosynthetic genes downstream PDS (phytoene desaturase) was higher in the pulp of Cara Cara than in Navel. Not important differences in the expression of these genes were observed between the peel of both oranges. Moreover, the content of the plant hormone ABA (abscisic acid) was lower in the pulp of Cara Cara, but the expression of two genes involved in its biosynthesis was higher. The results suggest that an altered carotenoid composition may conduct to a positive feedback regulatory mechanism of carotenoid biosynthesis in citrus fruits. Increased levels of isoprenoid precursors in the mutant that could be channeled to carotenoid biosynthesis may be related to the red-fleshed phenotype of Cara Cara.  相似文献   

9.
Citrus fruits are a rich source of carotenoids. cDNAs for carotenoid biosynthetic enzymes have been identified from their flavedos and juice sacs, and were used to examine expression patterns of carotenogenic genes during fruit development by several groups. However, functions of most of the gene products have not been verified yet. In this report, we examined catalytic activities of two carotenogenic enzymes from navel orange ( Citrus sinensis Osbeck), phytoene desaturase (CitPds) and lycopene-β-cyclase (CitLcyb), and one enzyme from Satsuma mandarin ( Citrus unshiu Marcow), lycopene-ɛ-cyclase (CitLcye). We also conducted in vitro import assay of the three proteins along with two other carotenogenic enzyme from navel orange, phytoene synthase (CitPsy) and carotenoid β-ring hydroxylase (CitChyb), using isolated chloroplasts, and confirmed their plastid localization and the presence of transit peptides that were cleaved upon import. Furthermore, we examined their suborganellar localization. CitPsy was found to be peripherally associated with the membrane, while CitPds was mainly recovered in the soluble fraction. By contrast, CitLcyb and CitLcye were targeted both to the soluble and to the membrane compartments, although the latter showed a stronger association to the membrane than the former. Finally, CitChyb was exclusively inserted into the chloroplast internal membranes. These data should help us better understand the mechanism of carotenoid biosynthesis.  相似文献   

10.
11.
Liu Q  Xu J  Liu Y  Zhao X  Deng X  Guo L  Gu J 《Journal of experimental botany》2007,58(15-16):4161-4171
A novel, pleiotropic sweet orange (Citrus sinensis L. Osbeck) mutant, 'Hong Anliu', is described. This mutation causes carotenoid accumulation, high sugar, and low acid in the fruits. Gas chromatographic analysis revealed that high sugar and low acid in the fruit were caused by the accumulation of sucrose and the deficiency of citric acid. The dominant carotenoid accumulated in albedo, segment membranes, and juice sacs is lycopene, which can reach levels that are a 1000-fold higher than those in comparable wild-type fruits. This mutation does not affect the carotenoid composition of leaves. Carotenoid concentration and biosynthetic gene expression of albedo, segment membranes, and juice sacs were dramatically altered by the mutation. Lycopene accumulation in the juice sacs was regulated by co-ordinate expression of carotenoid biosynthetic genes. However, in albedo and segment membranes, the expression of downstream carotenogenic genes seems to be feedback induced by lycopene accumulation. This implies that there must be at least two modes regulating lycopene accumulation in 'Hong Anliu' fruit. Taken together, these results suggest that massive amounts of lycopene might be synthesized in the juice sacs and then transported to the segment membrane and the albedo, which leads to lycopene accumulation there.  相似文献   

12.
13.
Citrus fruit are an important reservoir of carotenoids. Numerous studies have been carried out to identify and profile the members of gene families involved in carotenoid biosynthetic pathway to explain the diversity of coloration in citrus fruit. It was found that gene expression analysis could not always explain the changes in carotenoid content and composition, indicating that other unknown genes and mechanisms should be operative. This review summarizes and updates the current knowledge on gene families involved in the citrus carotenoid biosynthetic pathway and their roles on the regulation of carotenoid biosynthesis, as well as provides insightful questions leading to future experimentation.  相似文献   

14.
Aconitase activity and expression during the development of lemon fruit   总被引:21,自引:0,他引:21  
Citrus fruits are characterized by the accumulation of high levels of citric acid in the juice sac cells and a decline in acid level toward maturation. It has been suggested that changes in mitochondrial aconitase (EC 4.2.1.3) activity affect fruit acidity. Recently, a cytosolic aconitase (cyt-Aco) homologous to mammalian iron-regulated proteins was identified in plants, leading us to re-evaluate the role of aconitase in acid accumulation. Aconitase activity was studied in 2 contrasting citrus varieties, sweet lime ( Citrus limettioides Tan., low acid) and sour lemon ( Citrus limon var. Eureka, high acid). Two aconitase isozymes were detected. One declined early in sour lemon fruit development, but was constant throughout sweet lime fruit development. Its reduction in sour lemon was associated with a decrease in aconitase activity in the mitochondrial fraction. Another isozyme was detected in sour lemon toward maturation, and was associated with an increase in aconitase activity in the soluble fraction, suggesting a cytosolic localization. The cyt-Aco was cloned from lemon juice sac cells, but in contrast to the changes in isozyme activity, its expression was constant during fruit development. We present a model, which suggests that reduction of the mitochondrial aconitase activity plays a role in acid accumulation, while an increase in the cyt-Aco activity reduces acid level toward fruit maturation.  相似文献   

15.
Three varieties of lemon—Lisbon, Malta and Kusner—were examined for their content of juice sac saturated and mono-unsaturated long-chain hydrocarbons. The saturated fractions were 20 times the concentrations of the monoene fractions. The dominant linear hydrocarbon in the saturated fraction was C25 while C29 predominated in the monoene fraction. The saturated hydrocarbon profiles for Lisbon and Kusner were very similar to the profiles previously reported for Eureka lemon and Persian lime. The mono-unsaturated profiles were distinct for each of the three lemon varieties. In addition the lemon mono-unsaturated profiles were quite distinct from the hydrocarbon profiles previously reported for several other citrus species. In general the data support the elongation-decarboxylation mechanism for hydrocarbon synthesis proposed by Kolattukudy.  相似文献   

16.
Accumulation of lycopene in citrus fruits is an unusual feature restricted to selected mutants. Grapefruit (Citrus paradisi Macf.) is the Citrus specie with greater number of red-fleshed mutants, but the molecular bases of this alteration are not fully understood. To gain knowledge into the mechanisms implicated in this alteration, we conducted a comparative analysis of carotenoid profile and of the expression of genes related to carotenoid biosynthesis and catabolism in flavedo and pulp of two grapefruit cultivars with marked differences in colouration: the white Marsh and the red Star Ruby. Mature green fruit of Marsh accumulated chloroplastic carotenoids, while mature tissues lacked carotenoids. However, accumulation of downstream products such as abscisic acid (ABA) and expression of its biosynthetic genes, 9-cis-epoxycarotenoid dioxygenase (NCED1 and NCED2), increased after the onset of colouration. In contrast, red grapefruit accumulated lycopene, phytoene and phytofluene, while ABA content and NCED gene expression were lower than in Marsh, suggesting a blockage in the carotenoid biosynthetic pathway. Expression analysis of three genes of the isoprenoid pathway and nine of the carotenoid biosynthetic pathway revealed virtually no differences in flavedo and pulp between both genotypes, except for the chromoplast-specific lycopene cyclase 2 (β-LCY2) which was lower in the pulp of the red grapefruit. The proportion in the expression of the allele with high (β-LCY2a) and low (β-LCY2b) activity was also similar in the pulp of both genotypes. Therefore, results suggest that reduced expression of β-LCY2 appears to be responsible of lycopene accumulation in the red Star Ruby grapefruit.  相似文献   

17.
A survey of citrus cultivars in Israel in orchards where Alternaria brown spot was common on Minneola tangelos (mandarin × grapefruit), revealed the occurrence of the disease as typical foliar and fruit lesions on Dancy and Ellendale (mandarins), on Murcott tangor (mandarin × sweet orange), on Nova and Idith (mandarin hybrids), on Calamondin, and on Sunrise and Redblush (grapefruit). Isolates of Alternaria alternata from each of these hosts were proven to be pathogenic to Minneola tangelo.
The host range of A. alternata pv. citri from Israel was assayed by inoculating leaves of diverse citrus genotypes. Several mandarins and their hybrids (Dancy, Kara, King, Wilking, Satsuma, Minneola, Orlando, Mikhal, Idith, Nova, Page, Murcott), grapefruit (Marsh seedless), grapefruit × pummelo (Oroblanco), sweet orange (Shamouti, Valencia, Washington navel) Calamondin, and Volkamer citrus were susceptible. Several mandarins and their hybrids (Clementine, Avana, Yafit, Ortanique), Cleopatra, one sweet orange cultivar (Newhall), pummelo (Chandler), lemon (Eureka), Rough lemon, Rangpur lime, sweet lime, citron, limequat, sour orange, Troyer citrange and Alemow were resistant.  相似文献   

18.
19.
Somatic hybridization was performed via electrofusion between embryogenic suspension-derived protoplasts of transgenic green fluorescent protein (GFP) Satsuma mandarin (Citrus unshiu Marc. cv. Guoqing No. 1) (G1) callus and mesophyll protoplasts of calamondin (Citrus microcarpa Bunge), and three embryoids expressing GFP under UV light were obtained after 60 days of culture. The three embryoids were considered not as diploid cybrids but true allotetraploid somatic hybrids, as it was based on: (1) citrus heterokaryons are generally more vigorous and have higher capacity for embryogenesis as compared with unfused and homo-fused embryogenic callus protoplasts; (2) the callus line of G1 Satsuma mandarin has lost the embryogenesis capacity; and (3) citrus diploid cybrids produced by symmetric fusion always possess nuclear genome of mesophyll parent, and calamondin without GFP gene was used as leaf parent in this study. Subsequent flow cytometry, simple sequence repeat and cleaved amplified polymorphic sequence analysis of one regenerated callus mass and three resulting plants validated this supposition, i.e., the callus was derived from transgenic G1 callus protoplasts, and the three plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from callus parent. The potential of transgenic GFP citrus callus as suspension parent in citrus somatic fusion to study the mechanism of cybrid formation, create new citrus cybrids, and transfer organelle-encoded agronomic traits was also discussed.  相似文献   

20.
Abstract While citrus rootstocks differ in capacity for sodium and chloride ion exclusion, citrus scion species also vary in foliar sensitivity to NaCl salinisation. Of two common scions, ‘Lisbon’ lemon appears more sensitive, whereas ‘Valencia’ orange in less sensitive to leaf salt. In an attempt to explain this difference. ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) and ‘Prior Lisbon’ lemon (Citrus limon [L.] Burm. F.) were budded to rootstocks known to differ in their ability to exclude sodium ions viz, the strong excluder Trifoliata (Poncirus trifoliata [L.] Raf.), and the weaker excluder Troyer citrange (C. sinensis×P. trifoliata); neither rootstock shows strong exclusion of chloride ions. Budded trees were held under a photosynthetic photon flux density of 450 μmol m 2 S 1 and watered with nutrient solution containing either 0 or 50 mol m 3 NaCl. Growth and photosynthetic responses were measured over 58 d following onset of salinization: salinity effects on leaf gas exchange were studied in relation to changes in leaf water status, compatible solutes and foliar content of sodium and chloride ions, over that same period. Once root-zone salinization began to influence leaf solutes (day 30 onwards), lemon showed a steeper increase in leaf chloride than occurred for orange. Although rootstock differences were without effect on this ingress of chloride ions for either scion, sodium ions were excluded from both scions to a larger extent by Trifoliata than by Troyer citrange. Carbon dioxide assimilation of scion foliage was reduced earlier and to a much larger extent by rootzone salinization in lemon than in orange. Furthermore, comparisons of CO2 assimilation in relation to leaf tissue solutes between scions (on either rootstock) showed stronger responses for both sodium and chloride ions in lemon than in orange. Faster ingress of chloride into lemon leaves was identified as the crucial factor which predisposed towards expression of that contrast between scions. Although contrasts between scions in photosynthetic responses to salinization matched a faster ingress of chloride into lemon than into orange leaves, the sharper photosynthetic response of ‘Prior Lisbon’ lemon to salinity was not solely attributable to higher concentrations of chloride ions (cell sap basis). A difference between species in subcellular compartmentation of the chloride ion under saline conditions was invoked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号