首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive agriculture reduces soil biodiversity across Europe   总被引:3,自引:0,他引:3       下载免费PDF全文
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land‐use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community‐weighted mean body mass of soil fauna. We also elucidate land‐use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land‐use intensity caused highly consistent responses. In particular, land‐use intensification reduced the complexity in the soil food webs, as well as the community‐weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land‐use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land‐use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land‐use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land‐use intensification may threaten the functioning of soil in agricultural production systems.  相似文献   

2.
Land‐use change is a major driver of the global loss of biodiversity, but it is unclear to what extent this also results in a loss of ecological traits. Therefore, a better understanding of how land‐use change affects ecological traits is crucial for efforts to sustain functional diversity. To this end we tested whether higher species richness or taxonomic distinctness generally leads to increased functional distinctness and whether intensive land use leads to functionally more narrow arthropod communities. We compiled species composition and trait data for 350 species of terrestrial arthropods (Araneae, Carabidae and Heteroptera) in different land‐use types (forests, grasslands and arable fields) of low and high land‐use intensity. We calculated the average functional and taxonomic distinctness and the rarified trait richness for each community. These measures reflect the range of traits, taxonomic relatedness and number of traits that are observed in local communities. Average functional distinctness only increased significantly with species richness in Carabidae communities. Functional distinctness increased significantly with taxonomic distinctness in communities of all analyzed taxa suggesting a high functional redundancy of taxonomically closely related species. Araneae and Heteroptera communities had the expected lower functional distinctness at sites with higher land‐use intensity. More frequently disturbed land‐use types such as managed grasslands or arable fields were characterized by species with smaller body sizes and higher dispersal abilities and communities with lower functional distinctness or trait richness. Simple recommendations about the conservation of functional distinctness of arthropod communities in the face of future land‐use intensification and species loss are not possible. Our study shows that these relationships depend on the studied taxa and land‐use type. However, for some arthropod groups functional distinctness is threatened by intensification and conversion from less to more frequently disturbed land‐uses.  相似文献   

3.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

4.
Tropical forest restoration is increasingly seen as an activity that may counteract or reduce biodiversity loss. However, few studies monitor fauna or consider measures of functional diversity to assess restoration success. We assessed the effect of a tropical montane forest restoration program on species and functional diversity, using amphibians as the target group. We compared amphibian assemblages in three types of land use: restoration areas, tropical montane cloud forest (TMCF; reference ecosystem) and cattle pastures (degraded ecosystem) in southern Mexico. We also described microclimate, microhabitat heterogeneity, woody vegetation structure and diversity for each type of land use, and their relationship to amphibian species and functional diversity. Compared to TMCF, restoration areas had similar environmental conditions. However, amphibian species richness was similar in the three types of land use and abundance was lower in the restoration areas. In TMCF, the amphibian assemblage was dominated by forest-specialist species, the pastures by generalist species, and the restoration areas by a combination of both species types. Interestingly, functional richness, functional evenness and functional divergence did not vary with land use, though the number of functional groups in restoration areas and TMCF was slightly higher. Overall, the results suggest that after seven years, active restoration provided habitat heterogeneity and recovered woody vegetation capable of maintaining amphibian species and functional groups similar to those inhabiting TMCF. Forest fragments adjacent to restoration areas seem to facilitate fauna recolonization and this emphasizes the importance of the conservation of the reference ecosystems to achieving restoration success.  相似文献   

5.
Exploring species and genetic diversity interactions provides new opportunities for furthering our understanding of the ecology and evolution of population and community dynamics, and for predicting responses of ecosystems to environmental change. Theory predicts that species diversity within communities and genetic diversity within populations will covary positively, because either species and genetic diversity interact synergistically or they respond in parallel fashion to common habitat conditions. We tested the hypothesis of positive covariation between species and genotypic diversity in a metacommunity of the species-rich southwest Australian flora. We hypothesised that the connection between genotypic diversity and species diversity is strong within functional groups, but weak or non-existent if the species considered extend beyond the functional group. We show that allelic richness of Daviesia triflora, an ant-dispersed pea, covaries positively with the species richness of six co-occurring nitrogen-fixing legume species. No pattern can be detected between allelic richness of D. triflora and species richness of ant-dispersed species when four non-legumes are added. We also show that genetic diversity of D. triflora is not governed by the same environmental factors that determine the presence of a group of large-shrub/small-tree species in the same metacommunity. This study shows that species and genetic diversity covariation are more likely to be confined to within, rather than between, plant functional groups.  相似文献   

6.
Wide-spread fragmentation and isolation of habitats with high nature conservation value lends increasing importance to a better understanding of the factors which determine species richness in isolated habitat patches. Using data of one of the most abundant invertebrate groups in grasslands, Orthoptera, we analysed how species richness and distribution in 60 isolated semi-natural grassland remnants in Austria were affected by five environmental variables (altitude, habitat and land use diversity within each patch, habitat diversity of areas adjacent to each patch, patch size), and related to diversity of their main food source, i.e. vascular plants. We found a significant positive correlation between Orthoptera and vascular plant species richness, with threatened Orthoptera species having the lowest correlation coefficients. Life form diversity of plants was only moderately positively correlated with Orthoptera species richness. Habitat diversity within and adjacent to the grassland patch had by far the highest loadings on the first two axes of the principal component analysis, which jointly explained 99?% of the variance, and proved to be significant for total, threatened and not threatened Orthoptera, as well as for the two Orthoptera orders occurring in Central Europe (Caelifera, Ensifera). Additionally, the distribution of the majority of those 14 Orthoptera species analysed individually was mainly correlated with habitat diversity within and adjacent to the grassland patch. However, the distribution of a significant proportion of species was associated with other factors: five species were closely related to on-site land use diversity and patch size, and the distribution of three Ensifera species was not significantly correlated to any of the explanatory variables. We conclude that a surrogate taxa approach, i.e. the use of well-known taxonomic groups (e.g. vascular plants), may indeed deliver good results for capturing total, but less so for threatened, Orthoptera species richness in semi-natural grassland remnants. Small scale habitat diversity may be crucial to allow for the co-existence of a large number of Orthoptera species and has to be taken equally into account as patch size in nature conservation.  相似文献   

7.
It is becoming more apparent that species richness alone many not be sufficient to fully understand ecosystem resilience but that functional diversity (diversity of species having similar effects on an ecosystem process) may be more relevant. In particular, response diversity (diversity of species that respond differently to disturbance) within functional groups (FG) is suggested to be critical for resilience. We assess for the first time the use of response diversity as a measure of resilience in an empirical study. Our experimental design consisted of sites with three disturbance intensities during a grazing exclosure period and the same sites, 1 year later, after grazing. Plant FGs were identified based on effect traits related to nutrient cycling and soil retention, and species richness within groups was assessed during exclosure and after grazing. To assess if response diversity could predict loss of species richness (resilience analysis), response diversity was calculated only during the exclosure period, based on traits related to grazing tolerance. We also assessed the contribution of richness to response diversity during exclosure (redundancy analysis). Response diversity was significantly and highly correlated with species richness within FGs during disturbance. That is, FGs with the lowest response diversity were the most affected, disappearing when disturbance appeared. Richness within FGs during exclosure was not significantly correlated with response diversity, showing that higher richness does not ensure resilience. We conclude that response diversity can be used to predict which FGs are more resilient, and hence, less vulnerable to future disturbance.  相似文献   

8.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

9.
1. Recent biodiversity studies have addressed various community-level effects of biodiversity change, but the number of studies on specific biotic interactions is still rather limited. An open question in the context of plant-insect-herbivore relationships is how diversity impacts the population ecology of individual species. 2. In the present study, we explored the relationship between plant species diversity and the performance and fitness of a generalist herbivore, the meadow grasshopper Chorthippus parallelus Zetterstedt (Orthoptera, Gomphocerinae). A total of 1620 fourth-instar nymphs of this insect were captured and transferred to cages (10 females and 10 males per cage) on 81 experimental grassland communities in plots containing one to 60 plant species within the Jena biodiversity experiment. 3. Median survival of grasshoppers in the experiment was 14.5 days. Survival was independent of plant species richness and number of plant functional groups in the communities, but increased if plant communities contained grasses. Plant species richness and plant functional group richness had no effect on the number of oothecae laid by females or the number of hatchlings in the next generation. 4. Functional group composition of the plant communities affected most fitness measures. Grass presence increased the number of oothecae laid by females from 0.78 +/- 0.21 to 3.7 +/- 0.41 per female, and the number of hatchlings in the next generation from 4.0 +/- 1.3 to 16.6 +/- 2.4. Certain combinations of plant functional groups increased grasshopper survival. 5. The findings indicate that the fitness of C. parallelus is influenced more by plant functional group identity than by plant species richness. In the absence of grasses, grasshoppers performed better if more than just one functional group of plants was present. We call this a 'rescue effect' of plant functional group richness.  相似文献   

10.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

11.
Aim Anthropogenic changes in land use may have major consequences for global biodiversity. However, species diversity is determined by a suite of factors that may affect species differently at different spatial scales. We tested the combined effects of land use and spatial scale on α, β and γ diversity in the tropics using experimental communities of cavity‐nesting bees and waSPS (Hymenoptera: Aculeata). We aimed to determine whether: (1) land‐use intensity negatively affects species richness of cavity‐nesting Hymenoptera, (2) β diversity, both within and between plots, is higher in more natural systems, (3) species richness of flowering herbs correlates positively with species richness of Hymenoptera within and across habitats, (4) richness of cavity‐nesting Hymenoptera in highly modified habitats declines with increasing distance from natural or semi‐natural habitats, (5) the effects of land use, herb diversity and forest distance on Hymenoptera α and β diversity vary at different spatial scales, and (6) bees and waSPS respond to land use in a similar way. Location Manabi, south‐west Ecuador. Methods We examined diversity (species richness) within 48 plots of five habitat types that comprised a gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest fragments, using standardized nesting resources for reproducing communities of cavity‐nesting bees and waSPS. Results (1) Land use significantly affected α diversity of trap‐nesting bees and waSPS at the subplot (per trap) scale, but not subplot β diversity or plot‐scale species richness (γ diversity). (2) Beta diversity was surprisingly higher between plots within a land‐use type than between land‐use types. (3) Species richness of bees and waSPS increased with diversity of flowering herbs at the subplot (trap) scale only. (4) Forest distance correlated positively with bee species richness at the plot scale only. (5) Land use, herb diversity and forest distance each showed significant correlations with bee and wasp diversity at only one spatial scale. (6) Despite differences in life history, bees and waSPS responded to land‐use intensity in a similar way. Main conclusions The effects of land use on species richness were highly dependent on spatial scale. Subplot‐scale analyses showed that rice and pasture contained the highest species diversity, whereas plot‐scale analyses showed no significant difference in the diversity of different land‐use types. We emphasize caution in the estimation of biodiversity at only one spatial scale, and highlight the surprisingly large contribution of managed land to the regional biodiversity of these species.  相似文献   

12.
Veteran hollow oaks (Quercus spp.) are keystone structures hosting high insect diversity but are declining in numbers due to intensification of land use and the abandonment of traditional management. The loss of this vital habitat is resulting in a reduction of biodiversity, and this likely has consequences for ecosystem functioning, especially if functional diversity is reduced. A considerable amount of research has been done on predictors of beetle taxonomic diversity in veteran oaks, but predictors of functional diversity have remained largely unexplored. The aim of this study was to establish whether the features and surroundings of veteran oaks are related to functional diversity within three functional groups of beetles (decomposers, predators, and flower visitors) and determine whether species richness and functional diversity within the groups are dependent on the same predictors. Sampling was carried out intermittently between 2004 and 2011 on 61 veteran oaks in Southern Norway. Of the 876 beetle species that were collected, 359 were determined to be decomposers, 284 were predators, and 85 were flower visitors. Species richness and functional diversity in all groups were consistently higher in traps mounted on veteran oaks in forests than in open landscapes. However, additional predictors differed between groups, and for species richness and functional diversity. Decomposer species richness responded to tree vitality, while functional diversity responded to habitat connectivity, predator species richness responded to regrowth of shrubs while functional diversity responded to tree circumference, and flower visitor richness and functional diversity did not respond to any additional predictors. Previous studies have found that the features and surroundings of veteran oaks are important for conservation of taxonomic diversity, and the results from this study indicate that they are also important for functional diversity within multiple functional groups.  相似文献   

13.
The interaction between land use and climate change is expected to strongly affect species distributions along high elevation landscapes. We aimed to test the effect of climatic variables on community metrics among five types of land use in a high elevation landscape. We described dung beetle spatial and temporal taxonomic and functional diversity patterns, and partitioned β‐diversity into turnover and nestedness components. The interaction between land use and daily period of activity mostly drives abundance, functional richness and functional diversity, but not dung beetle species richness. Unlike Neotropical lowlands, species richness and abundance in open environments are similar to those existing in forests. Temperature is an important predictor of abundance and functional divergence. There is a higher spatial component of the taxonomic β‐diversity, which is highly driven by species turnover. The temporal component of the taxonomic β‐diversity was strongly driven by nestedness, where night assemblages are sub‐sets, although not entirely, of diurnal assemblages. For functional diversity, the temporal β‐diversity was much higher than the spatial β‐diversity, but both were similarly represented by functional group turnover and nestedness. The composition of nocturnal and diurnal assemblages is clearly different, even more than the differences observed between habitats. However, taxonomic turnover is the dominant force between sampling sites while nestedness dominates the daily pattern. This means that forest habitats are unlikely to act as shelters for grassland species under a scenario of rising temperature.  相似文献   

14.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

15.
We investigated how land use at multiple scales affects functional macrophytes groups and ecological status index in the boreal region. We employed a variance partitioning analysis to quantify the relative role of lake characteristics, multiple-scaled land use (catchment, buffer zones of 100, 300 and 500 m), and space in explaining the composition and richness of functional macrophyte groups (emergent and submerged macrophytes and hydrophytes) and ecological status of macrophytes in 110 Finnish lakes. Partial redundancy analysis (community composition) and partial linear regression (richness and status index) revealed that macrophyte community composition, richness, and status index were mostly explained by the pure effect of lake characteristics, which dominated over space for most macrophyte variables. Land use adjacent to shoreline had a higher effect on emergent macrophytes and status index compared to the land use of the whole catchment. Our findings suggest that emergent macrophytes can indicate changes in water quality and hydro-morphology originated from the close vicinity of the littoral zone. Ecological quality assessment based on emergent macrophytes only is probably not sufficient, but including emergent species in the assessments is recommended, especially in the species-poor boreal region.  相似文献   

16.
Seven grassland sites were sampled at South Africa's Hluhluwe-Umfolozi Game Park boundary with the surrounding land, to assess changes in arthropod diversity in response to land use. Epigaeic arthropods were sampled using pitfall traps and a sweep net. In all, 262 morphospecies were collected, but this is an underestimate of total local species richness. Fifty percent of the species caught were single occurrences. The number of species, families and orders represented at each of the seven sites was not significantly different, but the number of individuals was significantly different. Between-site comparisons, using multivariate statistics, did not reveal any strong site groupings, with all sites being unique. The conclusion is that the reserve boundary does not significantly divide arthropod diversity on a simple inside-versus-outside basis. A major factor influencing the arthropod assemblages was intensity of land use. Indigenous game animals and domestic cattle had the same effect, and it was the intensity of trampling that was important rather than the type of trampling. Human settlements had a major impoverishing effect. The Coleoptera families, Cicindelidae, Staphylindae and Carabidae, were particularly sensitive indicator taxa of land use Scarabaeidae species were the only group that were severely affected by the fence boundary, simply because their food source, the faeces of large native mammals, was inside, leaving them without resources outside the reserve.  相似文献   

17.
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.  相似文献   

18.
Question: Which are the plant functional groups responding most clearly to agricultural disturbances? Which are the relative roles of habitat availability, landscape configuration and agricultural land use intensity in affecting the functional composition and diversity of vascular plants in agricultural landscapes? Location: 25 agricultural landscape areas in seven European countries. Methods: We examined the plant species richness and abundance in 4 km × 4 km landscape study sites. The plant functional group classification was derived from the BIOLFLOR database. Factorial decomposition of functional groups was applied. Results: Natural habitat availability and low land use intensity supported the abundance and richness of perennials, sedges, pteridophytes and high nature quality indicator species. The abundance of clonal species, C and S strategists was also correlated with habitat area. An increasing density of field edges explained a decrease in richness of high nature quality species and an increase in richness of annual graminoids. Intensive agriculture enhanced the richness of annuals and low nature quality species. Conclusions: Habitat patch availability and habitat quality are the main drivers of functional group composition and plant species richness in European agricultural landscapes. Linear elements do not compensate for the loss of habitats, as they mostly support disturbance tolerant generalist species. In order to conserve vascular plant species diversity in agricultural landscapes, the protection and enlargement of existing patches of (semi‐) natural habitats appears to be more effective than relying on the rescue effect of linear elements. This should be done in combination with appropriate agricultural management techniques to limit the effect of agrochemicals to the fields.  相似文献   

19.
Biodiversity experiments generally report a positive effect of plant biodiversity on aboveground biomass (overyielding), which typically increases with time. Various studies also found overyielding for belowground plant biomass, but this has never been measured over time. Also, potential underlying mechanisms have remained unclear. Differentiation in rooting patterns among plant species and plant functional groups has been proposed as a main driver of the observed biodiversity effect on belowground biomass, leading to more efficient belowground resource use with increasing diversity, but so far there is little evidence to support this. We analyzed standing root biomass and its distribution over the soil profile, along a 1–16 species richness gradient over eight years in the Jena Experiment in Germany, and compared belowground to aboveground overyielding. In our long‐term dataset, total root biomass increased with increasing species richness but this effect was only apparent after four years. The increasingly positive relationship between species richness and root biomass, explaining 12% of overall variation and up to 28% in the last year of our study, was mainly due to decreasing root biomass at low diversity over time. Functional group composition strongly affected total standing root biomass, explaining 44% of variation, with grasses and legumes having strong overall positive and negative effects, respectively. Functional group richness or interactions between functional group presences did not strongly contribute to overyielding. We found no support for the hypothesis that vertical root differentiation increases with species richness, with functional group richness or composition. Other explanations, such as stronger negative plant–soil feedbacks in low‐diverse plant communities on standing root biomass and vertical distribution should be considered.  相似文献   

20.
Land‐use intensification is a major driver of local species extinction and homogenization. Temperate grasslands, managed at low intensities over centuries harbored a high species diversity, which is increasingly threatened by the management intensification over the last decades. This includes key taxa like ants. However, the underlying mechanisms leading to a decrease in ant abundance and species richness as well as changes in functional community composition are not well understood. We sampled ants on 110 grassland plots in three regions in Germany. The sampled grasslands are used as meadows or pastures, being mown, grazed or fertilized at different intensities. We analyzed the effect of the different aspects of land use on ant species richness, functional trait spaces, and community composition by using a multimodel inference approach and structural equation models. Overall, we found 31 ant species belonging to 8 genera, mostly open habitat specialists. Ant species richness, functional trait space of communities, and abundance of nests decreased with increasing land‐use intensity. The land‐use practice most harmful to ants was mowing, followed by heavy grazing by cattle. Fertilization did not strongly affect ant species richness. Grazing by sheep increased the ant species richness. The effect of mowing differed between species and was strongly negative for Formica species while Myrmica and common Lasius species were less affected. Rare species occurred mainly in plots managed at low intensity. Our results show that mowing less often or later in the season would retain a higher ant species richness—similarly to most other grassland taxa. The transformation from (sheep) pastures to intensively managed meadows and especially mowing directly affects ants via the destruction of nests and indirectly via loss of grassland heterogeneity (reduced plant species richness) and increased soil moisture by shading of fast‐growing plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号