首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

2.
Summary Protoplast fusion makes possible the fusion of two different cytoplasms, allowing genetical analysis of cytoplasmic factors. Two varieties of Nicotiana tabacum differing by their cytoplasms have been used. Techne, the first variety, obtained by an interspecific cross between N. debneyi (female) and N. tabacum (male) is characterized by the nuclear tabacum genome inside the debneyi cytoplasm. Techne plants present abnormal flowers with cytoplasmic male sterility (cytoplasmic marker) and sessile leave (nuclear marker). Techne leaf protoplasts were fused with leaf protoplasts of N. tabacum var. Samsun (or Xanthi). The last variety is characterized by petiolated leaves and normal flowers, because it possesses the nuclear tabacum genome associated with the tabacum cytoplasm. The nuclear marker (leaf shape) and the cytoplasmic one (flower shape inducing male sterility or fertility) have been used to distinguish among the whole regenerated plants the somatic nuclear hybrids and the cytoplasmic hybrids (cybrids) displaying the nuclear phenotype of one of the two parents associated with a modified flower type, intermediate between the parental ones.The chloroplastic (cp) DNA contained in each parent has been specifically identified by using EcoRI restriction nuclease and gel electrophoresis. EcoRI fragment patterns of cp DNA isolated from the first progeny of the regenerated cytoplasmic hybrids revealed that only one of the two parental cp DNAs is present in all cases; neither mixture of both parental cp DNAs nor recombinant cp DNA molecules were observed. This indicates that a specific elimination of one or the other parental cp DNAs occurs after the initial mixing of the cytoplasms. The study of the association of the modified flower type with the cp DNA isolated from the corresponding plant showed that cp DNA seems independent from the mechanism of cytoplasmic male sterility in tobacco.  相似文献   

3.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   

4.

Background and Aims

The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches.

Methods

Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance.

Key Results

Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi.

Conclusions

Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco.  相似文献   

5.
6.
Summary Mesophyll protoplasts of the kanamycin-resistant nightshade, Atropa belladonna, were fused with mesophyll protoplasts of the phosphinothricin resistant-tobacco, Nicotiana tabacum. A total of 447 colonies resistant to both inhibitors was selected. Most of them regenerated shoots with morphology similar to one of the earlier obtained and described symmetric somatic hybrids Nicotiana + Atropa. However, three colonies (0.2%) regenerated vigorously growing tobacco-like shoots; they readily rooted, and after transfer to soil, developed into normal, fertile plants. Unlike their tobacco parental line, BarD, the obtained plants are resistant to kanamycin [they root normally in the presence of kanamycin (200 mg/1)] and possess activity of neomycin phosphotransferase (NPT II) with the same electrophoretic mobility as the one of the nightshade line. According to Southern blot hybridization analysis carried out with the use of radioactively labeled cloned fragments of the Citrus lemon ribosomal DNA repeat, as well as with Nicotiana plumbaginifolia genus-specific, interspersed repeat Inp, the kanamycin-resistant plants under investigation have only species-specific hybridizing bands from tobacco. Cytological analysis of the chromosome sets shows that plants of all three lines possess 48 large chromosomes similar to Nicotiana tabacum ones (2n = 48), and one small extra chromosome (chromosome fragment) similar to Atropa belladonna ones (2n = 72). Available data allow the conclusion that highly asymmetric, normal fertile somatic hybrids with a whole diploid Nicotiana tabacum genome and only part (not more than 2.8%) of an Atropa belladonna genome have been obtained without any pretreatment of a donor genome, although both these species are somatically congruent.  相似文献   

7.
Agrobacterium tumefaciens strains harbouring plasmid vectors pBCAT1, pVU1011 or pMON806 were used to transform leaf explants of Nicotiana tabacum cultivars Delgold and Candel, N. debneyi, and N. rustica var. NRT. Transgenic plants resistant to the selective agents kanamycin, hygromycin or methotrexate were regenerated and used as sources of leaf mesophyll protoplasts. Protoplasts divided and regenerated plants in the presence of selective agents at levels inhibitory to protoplasts of non-transformed plants. Cross-resistance of protoplasts to more than one selective agent was not observed in this study which suggests that this approach may lead to an efficient interspecific somatic hybrid selection system.  相似文献   

8.
An efficient and easy method for genetic characterization of plant somatic hybrids is proposed. In a first qualitative approach, four somatic hybrids and their parental species (Nicotiana tabacum andN. plumbaginifolia) were characterized by DNA fingerprinting and Random Amplification of Polymorphic DNA (RAPD). After this, a quantitative estimation of the degree of parental contribution to the hybrids was carried out by means of a slot-blot analysis. Both qualitative methods, showed one hybrid identical toN. tabacum, two almost identical toN. plumbaginifolia, and a fourth similar to this parental species, but with someN. tabacum admixture. The quantitative method, for the same hybrids, gave 83%, 7%, 7%, and 37%N. tabacum DNA contribution, respectively.  相似文献   

9.
Summary Somatic hybrid plants, produced between Nicotiana rustica and N. tabacum by heterokaryon isolation and culture and also by mutant complementation, were examined regarding their ability to set seed. From a total of seventeen independent somatic hybrids, three were found to be partially self-fertile while the others did not set seed. Differences regarding the methods of hybrid selection, parental varieties and chloroplast composition of hybrids did not appear to be significant regarding the ability of plants to set seed. Much variation in fertility was observed in subsequent generations and by recurrent selection of the most fertile, over two generations, it was possible to increase the level of self-fertility in some of the progeny. One R2 derivative possessed approximately a tenfold higher level of self-fertility than it's somatic hybrid parent. The presence of genetic markers from both parents were observed in all progeny indicating their hybrid nature.  相似文献   

10.
Tezuka T  Kuboyama T  Matsuda T  Marubashi W 《Planta》2007,226(3):753-764
Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi × N. sylvestris, but not in hybrid seedlings from the cross N. debneyi × N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum × N. debneyi.  相似文献   

11.
Summary Using the donor-recipient protoplast-fusion technique, we have recently constructed several alloplasmic-like lines ofNicotiana in which the original cytoplasms (or part of them) of eitherN. tabacum orN. sylvestris were replaced respectively, either byN. undulata or byN. bigelovii cytoplasms. These cybridizations resulted in two kinds of cytoplasmic male-sterile (CMS) cybrid plants:N. tabacum withN. undulata-like cytoplasm andN. sylvestris withN. bigelovii-like cytoplasm. Fusion of protoplasts, derived from the above two CMS types, by the donor-recipient technique, lead to the recovery of 21 cybrid calli. One of these regenerated a cybrid with fertile pollen but having shortened filaments and slighly tappered anthers. Self pollination of the latter cybrid resulted in a second generation progeny having almost normal filaments and anthers. Further selfings produced a third generation in which numerous plants had normal stamens and fertile pollen. Mitochondrial DNA (mtDNA) analysis of second and third generation progenies revealed a novel pattern which differed from each of the parental CMS cybrids and also from the mtDNA of normal, male-fertileNicotiana species. The results suggest that mtDNA recombination between different types of CMS can lead to restoration of male-fertility.Paper presented at the 1st Plant Molecular Biology Congress, Savannah, Georgia, Oct./Nov. 1985.  相似文献   

12.
Summary Restoration of male fertility was achieved by fusing protoplasts from male sterile (CMS) Nicotiana sylvestris plants with X-irradiated protoplasts derived from fertile N. tabacum plants. The CMS N. sylvestris plants were derived from a previous somatic hybridization experiment and contained alien (Line 92) cytoplasm. About one quarter of the regenerated plants were found to be cybrids. i.e. they consisted of N. sylvestris nuclei combined with all or some components of N. tabacum cytoplasm. In one half of these cybrids male fertility was restored to different levels. The chloroplasts of the two parental donors differ in respect to tentoxin sensitivity: chloroplasts of CMS N. sylvestris are sensitive while those of N. tabacum are insensitive. It could therefore be demonstrated that there was an independent segregation of chloroplast type and male fertility/sterility: several somatic cybrids were male fertile but tentoxin sensitive and others were tentoxin insensitive yet they were male sterile. Only in about one half of the somatic cybrids was male fertility restored together with restoration to tentoxin insensitivity.  相似文献   

13.
Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and rps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

14.
Summary Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to 32P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length was 11.2 kb, 10.4 kb (tobacco) and 9.4 kb, 10.2 kb (night-shade). For analysis of hybrids, labelled 32P rDNA specific probes were hybridized to DNA of parental species and somatic hybrids digested with restriction endonucleases EcoR1, EcoRV and BamH1. A new class of ribosomal DNA repeat, absent in parental species, was found in hybrid line NtAb-1. Possible mechanisms of appearence of a new rDNA class in the process of somatic cell fusion are discussed.  相似文献   

15.
Nicotiana tabacum (+)N. rustica interspecific somatic hybrids were produced by fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistantNicotiana tabacum L. with leaf mesophyll protoplasts of transgenic kanamycin-resistantN. rustica L. Somatic hybrids were selected on the basis of resistance to both methotrexate and kanamycin. Evidence for nuclear hybridization was obtained for 21 hybrids by restriction-fragment-length-polymorphism (RFLP) analysis using a heterologous wheat nuclear ribosomal-DNA (rDNA) probe and by analysis of glutamate-oxaloacetate transaminase (GOT) isoenzymes. Chloroplasts segregated non-randomly as 20 of the somatic hybrids possessedN. rustica chloroplasts and only one hadN. tabacum chloroplasts. Patterns of mitochondrial inheritance were examined by hybridization of a heterologous wheat cytochrome oxidase subunit II (coxII) gene with genomic DNA of the somatic hybrids. Four somatic hybrids with hybridization patterns similar toN. rustica and 17 with hybridization patterns consistent with mitochondrial DNA (mtDNA) rearrangement or recombination were obtained. None of the somatic hybrids had patterns ofcoxll hybridization identical withN. tabacum. Male-fertility levels in the hybrids ranged from undetectable to 87% and only nine hybrids produced a limited amount of viable seed. There was no apparent correlation between the patterns of organelle inheritance in the somatic hybrids and the relative degree of fertility.Contribution No. 1439 Plant Research CentreCurrent address: Plant Biotechnology Institute, National Research Council, 110 Gymmasium Road, Saskatoon, Saskatchewan S7N OW9, Canada  相似文献   

16.
We have characterized two related regions of twoPetunia mitochondrial genomes in order to understand how plant mt genomes from a cytoplasmic male sterile (cms) line and a fertile line diverge from one another. Restriction maps of these regions indicate that a sequence arrangement shared by the two genomes adjoins sequences which are not shared at the corresponding locations in the two genomes. A point where the mt genomes from the cms line and the fertile lines diverge from each other was identified and mapped. Previously we had observed that somatic hybrids constructed from the cms and the fertile line contained mt genomes carrying new combinations of parental mtDNA restriction fragments (3). Using the restriction maps of the two related mtDNA regions, a mtDNA arrangement unique to the cms parent could be shown to be present in all 17 stable sterile somatic hybrids tested and none of the 24 stable fertile somatic hybrids tested. This data does not exclude the possibility that additional, as yet unidentified, mtDNA arrangements unique to the cms parent might also be found exclusively in sterile somatic hybrids. Whether or not the sterile parental mtDNA arrangement reported here is functionally related to cms, it apparently segregates with cms in somatic hybrids.  相似文献   

17.
An effective selection system preceded by double inactivation of parental protoplasts was used to transfer Nicotiana suaveolens Leh. cytoplasmic male sterility into a commercial tobacco (N. tabacum L.) breeding line. Mesophyll protoplasts from transformed plants of N. tabacum cultivar WZ2-3-1-1 possessing a neomycin phosphotransferase II gene were used as the nuclear donors, while those isolated from N. suaveolens plants carrying a chloroplast mutation for resistance to spectinomycin, induced using nitrosomethyl urea, were the cytoplasm donors in somatic cybridizations. Prior to fusion, nuclear donor protoplasts were inactivated with iodoacetamide or rhodamine 6G, while those of the cytoplasm donor were inactivated by X-irradiation. The resultant microcalli were cultured on a shoot regeneration medium containing both kanamycin and spectinomycin to select cybrids. Only regenerants that had typical characteristics of the N. tabacum cultivar were selected for transfer to the glasshouse. Four putative cytoplasmic male-sterile (CMS) plants, out of a total of 44 regenerated plants transferred to the glasshouse, were obtained. Intraspecific somatic transfers of the CMS trait between N. tabacum cultivars with distinctlydifferent morphologies using single inactivation and nonselective shoot regeneration medium were demonstrated. The implications of the results for practical tobacco breeding as a means of circumventing lengthy backcrossing procedures are discussed.  相似文献   

18.
Summary The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using 32P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.  相似文献   

19.
Summary Molecular characterization of mitochondrial (mt) DNA of rye (Secale cereale L.), free of significant amounts of contaminating chloroplast (cp) DNA, was initiated using the open-pollinated cultivar Halo as a source of mtDNA. Based on the compilation of data from restriction patterns, the molecular size of the mtDNA was estimated to be 410 Kb and its buoyant density was determined as 1.705 g/ml. Southern hybridization, using labelled cp genes (P700 and ribulosebiphosphate-carboxylase large subunit), indicated the presence of cpDNA-homologous regions on putative mtDNA fragments. Mt DNAs of inbred lines with fertile and cytoplasmic male sterile (CMS) Pampa cytoplasm were also analysed. Whereas the restriction patterns of mtDNAs of Halors and the fertile line turned out to be identical, Pampa mtDNA showed a unique restriction pattern, indicating (as in most other CMS systems) the involvement of mtDNA rearrangements in the expression of male sterility in rye. All 3 mtDNAs investigated contain regions homologous to the plasmid S1 of the CMS-S cytoplasm of Maize (Zea mays), as indicated by hybridization experiments. In Pampa cytoplasm the S-homologous sequence is located within a rearranged region of mtDNA.  相似文献   

20.
Summary Segments of mitochondrial DNA (mtDNA) carrying the gene for the -subunit of F1-ATPase (atpA) were detected by Southern hybridization with atpA from pea as probe. In the case of Nicotiana langsdorffii, we identified four fragments that are derived from combinations of two different 5 and two different 3 flanking regions of atpA. All four types share the coding region, suggesting that they result from homologous recombination in the coding region of atpA. By contrast, N. glauca generated only one analogous fragment, which indicated the existence of only a single type of atpA in N. glauca. In the case of somatic hybrids obtained by fusion between protoplasts from N. langsdorffii and N. glauca, analysis with EcoRI or HindIII detected three new fragments in addition to the parental fragments. These new fragments can be explained by homologous recombination within the coding region of atpA. Our results show that the coding region of atpA is involved not only in intragenomic homologous recombination but can also be involved in homologous recombination between two parental mitochondrial genomes of somatic hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号