首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic adenosine 3′,5′-monophosphate and N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate increase the accumulation of α-methyl-d-glucoside by cortical slices from rat, rabbit, dog and human kidney. The characteristics of the effect have been studied in rat tissue. At least 90 min of exposure of the tissue to cyclic nucleotide prior to onset of glucoside accumulation is required as well as presence of the cyclic nucleotide during the accumulation phase. Inhibition of protein synthesis does not abolish the effect of N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate. The cyclic nucleotide causes an increase in the initial entry rate of α-methyl-d-glucoside into cells and an increase in the intracellular steady state concentration. The cyclic nucleotide does not affect the apparent Km of the glucoside entry process but increases the maximum velocity of accumulation.  相似文献   

2.
3.
The cytokinin activities of adenosine 3′,5′-monophosphate, N6,O2″-dibutyryladenosine 3′,5−'monophosphate, 8-bromoadenosine 3′,5′-monophosphate, N6-(Δ2-isopentenyl)adenosine 3′,5′-monophosphate, and N6-benzyladenosine 3′,5′-monophosphate were determined in the tobacco bioassay and compared with the activities of the corresponding non-cyclic nucleotides, nucleosides and bases of the N6-isopentenyl-substituted, N6-benzyl-substituted, 8-bromo-substituted, and unsubstituted adenine series. In each of these series the cytokinin activities in decreasing order were: bases ⪢ nucleosides ⪖ nucleotides > cyclic nucleotides. All members of the N6-isopentenyl- substituted and N6-benzyl-substituted series were highly active cytokinins, reaching maximum activity at concentrations of 1 μM or less, whereas, as expected, all members of the unmodified adenine series were inactive in the tested concentration ranges of up to 180 and 200 μM for adenosine and adenine, and 40 μM for the adenine nucleotides. Members of the 8-bromo-substituted adenine series were much weaker cytokinins than the N6-substituted adenine derivatives but showed activity in the same sequence starting at a concentration of about 5 μM. Thus, in the cases of 8-bromoadenosine 3′,5′-monophosphate and N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate, both of which have been reported to promote cell division and growth of plant tissues, the cytokinin activity is related to the 8-bromo substituent and to the N6-butyryl substituent, respectively, rather than to the 3′,5′-cyclic monophosphate moiety.  相似文献   

4.
In vivo administration of glucagon caused an increase in the dissociation of protein kinase subunits which was accompanied by elevated adenosine 3′,5′-monophosphate concentrations in the rat liver. Concomitantly, there was a decrease in non saturated adenosine 3′,5′-monophosphate binding sites. A reduction in protein kinase activity measured in the presence of the cyclic nucleotide was apparent at 5 minutes of glucagon administration while enzyme activity assayed in the absence of adenosine 3′,5′-monophosphate was already increased after one minute. Glucose, given through an intragastric tube, caused no changes in the effect of glucagon on hepatic protein kinase.  相似文献   

5.
Phosphofructokinase activity in rat testis is elevated by treatment in vitro with human chorionic gonadotropin or N6, O2′-dibutyryladenosine 3′,5′-monophosphate. Puronycin or actinomycin D suppresses the effect of the gonadotropin but does not affect the enzyme increase induced by the cyclic nucleotide. The possible cause for the divergent action of the two stimulatory agents are discussed.  相似文献   

6.
Phosphofructokinase activity in prepubertal rat ovaries is elevated by in vitro treatment with human chorionic gonadotropin or N6-O2′-dibutyryl-adenosine-3′,5′-monophosphate. Puromycin and actinomycin D have no appreciable effect on the hormone-induced enzyme increase but the stimulatory effect of the cyclic nucleotide is blocked by puromycin. In the light of these and other observations, the possible mode of action of the gonadotropin is discussed.  相似文献   

7.
Fatty acid synthesis by isolated liver cells is dependent upon the availability of lactate and pyruvate. A lag in fatty acid synthesis is explained by time being required for lactate and pyruvate to accumulate to maximum concentrations in the incubation medium. The initial rate of fatty acid synthesis is not linear with cell concentration, being disproportionately greater at higher cell concentrations because optimal lactate and pyruvate concentrations are established in the medium more rapidly. The accumulation of lactate and pyruvate is inhibited markedly by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. This accounts in part for the inhibition of fatty acid synthesis caused by this cyclic nucleotide. Other sites of action are apparent, however, because exogenous lactate plus pyruvate only partially relieves the inhibition. The profile of metabolic intermediates suggests that N6,O2′-dibutyryl adenosine 3′,5′-monophosphate inhibits the conversion of glycogen to pyruvate and lactate by decreasing the effectiveness of phosphofructokinase and pyruvate kinase.  相似文献   

8.
The stimulatory effects of N6,O2′-dibutyryl adenosine 3′,5′-monophosphate on proteoglycans released from immature rabbit ear cartilage were studied in vitro. Cartilage incubated in medium containing dibutyryl cyclic AMP resulted in a significant increase of proteoglycans released in concentrations above 0.5 mM. Theophylline (1 mM) which did not significantly stimulate proteoglycans released alone, was found to potentiate the action of this nucleotide. ATP, 5′-AMP and butyric acid in the presence of theophylline, did not stimulate proteoglycans released. The addition of protein or RNA synthesis inhibitors depressed proteoglycans released by dibutyryl cyclic AMP and theophylline.Gel chromatographic and chemical investigations of the proteoglycans released into the culture media in the presence of dibutyryl cyclic AMP indicated a reduction in the proportion of protein associated with these complexes. This result, together with enzyme inhibitor studies, leads us to speculate that the observed action of dibutyryl cyclic AMP on rabbit ear cartilages may be mediated by the neural proteases.  相似文献   

9.
A protein kinase that catalyzes the phosphorylation of histone was partially purified from rat thymus, and the rate of histone phosphorylation was stimulated three- to fourfold by 1 × 10?6 M adenosine 3′,5′-monophosphate (cyclic AMP). Thymic protein kinase was more active than the enzyme from spleen. Histone fractions f1, f2a, f2b, and f3 were all capable of serving as phosphate acceptors for the thymic protein kinase, and the rate of phosphorylation of each fraction was stimulated by cyclic AMP. The ability of various 3′,5′-mononucleotides to stimulate protein kinase activity was compared. Inosine 3′,5′-monophosphate (cyclic IMP) was the most effective substitute for cyclic AMP. The cellular distribution of cyclic AMP-dependent protein kinase and adenylate cyclase activities in the thymus was determined. Cyclic AMP-dependent protein kinase activity is present in both small thymocytes and residual thymic tissue. The specific activity of protein kinase from residual tissue, both for basal and cyclic AMP-stimulated enzyme, was greater than that of enzyme from small thymocytes. In contrast to this, adenylate cyclase activity is predominately localized in the thymocytes.  相似文献   

10.
Effect of adenosine on the level of guanosine 3′,5′-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3′,5′-monophosphate in the slices 3–4-fold. Upon removal of adenosine from the medium, the concentration of guanosine 3′,5′-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3′,5′-monophosphate level to the same extent as adenosine, while adenine or other nucleotides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3′,5′-monophosphate in cerebellar slices although level of adenosine 3′,5′-monophosphate was elevated by adenosine.Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3′,5′-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters.The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3′,5′-monophosphate indicating that adenosine increased the level of guanosine 3′,5′-monophosphate by a different mechanism from the depolarization.  相似文献   

11.
Treatment of Fundulus melanophores with adenosine 3′,5′-monophosphate (cyclic AMP) is followed by reversible melanin dispersion in these cells. Adenosine 3′-monophosphate and adenosine 5′-monophosphate both have a similar, but weaker dispersing action. In addition, adenosine 5′-monophosphate also has a melanin aggregating effect. These results are interpreted to mean that nerve transmitters may act by controlling the level of cyclic AMP within the Fundulus melanophore.  相似文献   

12.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

13.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

14.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

15.
1,N6-etheno-2-aza-adenosine 3′,5′-monophosphate (cyclic 2-aza-?-AMP) has been shown to be a sensitive and an efficient substrate for the assay of cyclic-nucleotide phosphodiesterase. The relative activity is 75% compared to cyclic AMP. Two Km values of 503 and 15 μm were observed with the beef heart enzyme.  相似文献   

16.
Rat pineal organs maintained in organ culture converted [14C]tryptophan to [14C]serotonin and [14C]melatonin. The synthesis of both indoles was stimulated by the presence of norepinephrine or dibutyryl adenosine 3′,5′-monophosphate. This effect of norepinephrine could be blocked by the α-adrenergic blocking drug, propranolol, but was not modified by the a-adrenergic blocking agent, phenoxybenzamine. Neither blocking agent modified the pineal response to dibutyryl adenosine 3′,5′-monophosphate. Unlike dibutyryl adenosine 3′,5′-monophosphate, the naturally occurring adenosine phosphates did not stimulate synthesis of [14C]melatonin in vitro.  相似文献   

17.
N6,O2′-Dibutyryl cyclic adenosine 3′,5′-monophosphate (DBcAMP) injected into rats bearing MTW9 mammary carcinoma resulted in an early disappearance of tumor microsomal glucose-6-phosphate dehydrogenase activity while mitochondrial and supernatant isozyme activities were not affected. Prolonged DBcAMP treatment of rats bearing 5123 hepatoma significantly decreased all glucose-6-phosphate dehydrogenase isozyme activities but did not alter host liver isozyme activities or liver regeneration. Since DBcAMP treatment arrested growth of these tumors, the loss of microsomal glucose-6-phosphate dehydrogenase may be an early event in the inhibition of tumor growth in vivo.  相似文献   

18.
The levels of guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase in the larval and pupal tissues of Bombyx mori were estimated. This activity was highest in the fat body of the female pupa. The enzyme showed a significant variation in activity during development of adult in female. Male silkworm gave less significant results. The cGMP-dependent kinase partially purified from the pupa could be activated by a high concentration of adenosine 3′,5′-monophosphate (cAMP) as reported for cGMP-dependent protein kinases from other sources. The nature of the enzyme thus activated and that of the enzyme activated by a low concentration of cGMP were found to be similar in several aspects. This indicates that the intrinsic activity of protein kinase from the silkworm pupa is independent of the kind of cyclic nucleotide as an activator.  相似文献   

19.
The cyclic adenosine 3′,5′-monophosphate (cyclic AMP) phosphodiesterase from human leukemic lymphocytes differes from the normal cell enzyme in having a much higher activity and a loss of inhibition by cyclic guanosine 3′,5′-monophosphate (cyclic GMP). In an effort to determine the mechanism of these alterations, we have studied this enzyme in a model system, lectin-stimulated normal human lymphocytes. Following stimulation of cells with concanavalin A (con A) the enzyme activity gradually becomes altered, until it fully resembles the phosphodiesterase found in leukemic lymphocytes. The changes in the enzyme parallel cell proliferation as measured by increases in thymidine incorporation into DNA. The addition of a guanylate cyclase inhibitor preparation from the bitter melon prevents both the changes in the phosphodiesterase and the thymidine incorporation into DNA. This blockage can be partially reversed by addition of 8-bromo cyclic guanosine 3′,5′-monophosphate (8-bromo cyclic GMP) to the con A-stimulated normal lymphocytes. These results indicate a possible role of cyclic GMP in a growth related alteration of cyclic AMP phosphodiesterase.  相似文献   

20.
Abstract

Phosphorus diastereoisomers, R p and S p of p1-adenosine cyclic 3′, 5′ P2 -diphenylpyrophosphate (cyclic AMP diphenylphosphoric mixed anhydride) (1) were prepared from adenosine cyclic 3′, 5′-monophosphate (cyclic AMP) and diphenyl phosphorochloridate and characterized by 31p NMR. The synthesis preferentially gave R p-1. Reaction of 1 with dimethylamine resulted in the formation of a (~ 3:1) mixture of adenosine cyclic 3′,5′-N, N-dimethylphosphoramidate and diphenyl-N, N-dimethylphosphoramidate and occurred with inversion of configuration at cyclic AMP phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号