首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To detect the genomic constitutions and investigate the evolutionary relationships between Campeiostachys Drobov and Elymus L. species, we have cloned and analyzed 271 5S nuclear ribosomal DNA sequences from 27 accessions of these species, mostly of Chinese origin. We identified Long H1, Short S1, and Long Y1 unit classes in nine Campeiostachys or Elymus species. The identification of the three orthologous unit classes was confirmed by the neighbor‐joining tree of each unit class from PAUP and the phylogeny tree of three unit classes from MrBayes. The results suggested that these Elymus species comprise StYH haplomes and should be included in Campeiostachys. The phylogeny tree showed a clear separation between the S1 unit class and Y1 unit class. However, Y1 unit class sequences formed a sister clade to the S1 unit class, implying that although the St and Y haplomes might have some affinity, they are distinct from one another. The phylogeny tree also indicated that the five species in sect. Turczaninovia (C. dahurica var. cylindrica, C. dahurica var. dahurica, C. dahurica var. tangutorum, E. purpuraristatus, and E. dahuricus Turcz. ex Griseb. var. violeus C. P. Wang & H. L. Yang) might share a more recent common ancestor, whereas the four species in sect. Elymus (C. nutans, E. breviaristatus (Keng) Keng ex Keng f., E. sinosubmuticus (Keng) Keng f., and E. atratus (Nevski) Hand.‐Mazz.) share a close relationship. By identifying only one type of unit class for each haplome, we propose that the 5S nuclear ribosomal DNA sequences of species within Campeiostachys might have undergone haplome‐specific concerted evolution.  相似文献   

2.
B R Baum  D A Johnson 《Génome》1999,42(5):854-866
The molecular diversity of the 5S rDNA units in 13 accessions of wall barley, which include Hordeum murinum, H. leporinum, and H. glaucum, is reported. Our analyses, based on 54 sequenced clones, indicate the presence of two sequence classes not previously seen in other barley species; namely, the long Y1 unit class and the short Y1 unit class. In addition, the accumulation of new sequence information has allowed us to refine previous groups. Using these new results, along with previously published work, we present a summary of all the unit classes described to date and potential correspondences between 5S rDNA unit classes and haplomes identified previously. In H. murinum, we found the long H1 and long X2 unit classes, and in one of six accessions referable to H. glaucum we found the unique short Y1 unit class. Our cladistic analyses, using orthologous sequences, provide support for the current model for the relationships among several species within the Triticeae.  相似文献   

3.
The molecular diversity of 5S rDNA from the closely related Asiatic diploid species, Hordeum bogdanii and the H. brevisubulatum complex has been catalogued and analysed. As in previous studies in Hordeum, we found that the sequences are constrained in such an manner that unit classes can be defined. The long H1 unit class, known to occur in all Eurasian species, was frequently found in these 2 taxa. In addition, we identified a new unit class, called the short H3 to reflect the H genome found in these 2 taxa. Although the 2 taxa are very close morphologically, the variation in the long H1 DNA units is constrained to such a great degree that, in many cases, the accessions in a unit class from a single species are clustered. In H. bogdanii, the majority of the sequences are grouped in this manner, whereas in the H. brevisubulatum complex, the tendency to be constrained is lower in some but not all subspecies. These results support keeping H. brevisubulatum ssp. violaceum and ssp. iranicum as 1 species with the long H1 and short H1 unit classes, while retaining ssp. nevskianum and ssp. turkestanicum in the H. brevisubulatum complex. We have summarized our work on the presence/absence of the 10 unit classes found in all diploid species of Hordeum. A phylogenetic analysis, based strictly on the presence/absence of unit classes, indicated clearly that all the South American diploids and all the North American diploids possess long H2 and long Y2 unit classes and, except for H. californicum and H. pusillum, which contain long H1 in addition to the long H2 and long Y2 classes, are devoid of the long H1 unit class. This suggests that the gene gain/loss process from a common ancestor has been concomitant with intercontinental dispersal between the Old and the New Worlds.  相似文献   

4.
5S rDNA clones from 12 South American diploid Hordeum species containing the HH genome and 3 Eurasian diploid Hordeum species containing the II genome, including the cultivated barley Hordeum vulgare, were sequenced and their sequence diversity was analyzed. The 374 sequenced clones were assigned to "unit classes", which were further assigned to haplomes. Each haplome contained 2 unit classes. The naming of the unit classes reflected the haplomes, viz. both the long H1 and short I1 unit classes were identified with II genome diploids, and both the long H2 and long Y2 unit classes were recognized in South American HH genome diploids. Based upon an alignment of all sequences or alignments of representative sequences, we tested several evolutionary models, and then subjected the parameters of the models to a series of maximum likelihood (ML) analyses and various tests, including the molecular clock, and to a Bayesian evolutionary inference analysis using Markov chain Monte Carlo (MCMC). The best fitting model of nucleotide substitution was the HKY+G (Hasegawa, Kishino, Yano 1985 model with the Gamma distribution rates of nucleotide substitutions). Results from both ML and MCMC imply that the long H1 and short I unit classes found in the II genome diploids diverged from each other at the same rate as the long H2 and long Y2 unit classes found in the HH genome diploids. The divergence among the unit classes, estimated to be circa 7 million years, suggests that the genus Hordeum may be a paleopolyploid.  相似文献   

5.
Relationships among the currently recognized 11 diploid species within the genus Aegilops have been investigated. Sequence similarity analysis, based upon 363 sequenced 5S rDNA clones from 44 accessions plus 15 sequences retrieved from GenBank, depicted two unit classes labeled the long AE1 and short AE1. Several different analytical methods were applied to infer relationships within haplomes, between haplomes and among the species, including maximum parsimony and maximum likelihood analyses of consensus sequences, “total evidence” phylogeny analysis and “matrix representation with parsimony” analysis. None were able to depict suites of markers or unit classes that could discern among the seven haplomes as is observed among established haplomes in other genera within the tribe Triticeae; however, most species could be separated when displayed on gene trees. These results suggest that the haplomes currently recognized are so refined that they may be relegated as sub-haplomes or haplome variants. Amblyopyrum shares the same 5S rDNA unit classes with the diploid Aegilops species suggesting that it belongs within the latter. Comparisons of the Aegilops sequences with those of Triticum showed that the long AE1 unit class of Ae. tauschii shared the clade with the equivalent long D1 unit class, i.e., the putative D haplome donor, but the short AE1 unit class did not. The long AE1 unit class but not the short, of Ae. speltoides and Ae. searsii both share the clade with the previously identified long {S1 and long G1 unit classes meaning that both Aegilops species can be equally considered putative B haplome donors to tetraploid Triticum species. The semiconserved nature of the nontranscribed spacer in Aegilops and in Triticeae in general is discussed in view that it may have originated by processes of incomplete gene conversion or biased gene conversion or birth-and-death evolution.  相似文献   

6.
The molecular diversity of the rDNA sequences (5S rDNA units) in 71 accessions from 26 taxa of Avena was evaluated. The analyses, based on 553 sequenced clones, indicated that there were 6 unit classes, named according to the haplomes (genomes) they putatively represent, namely the long A1, long B1, long M1, short C1, short D1, and short M1 unit classes. The long and short M1 unit classes were found in the tetraploid A. macrostachya, the only perennial species. The long M1 unit class was closely related to the short C1 unit class, while the short M1 unit class was closely related to the long A1 and long B1 unit classes. However, the short D1 unit class was more divergent from the other unit classes. There was only one unit class per haplome in Avena, whereas haplomes in the Triticeae often have two. Most of the sequences captured belonged to the long A1 unit class. Sequences identified as the long B1 unit class were found in the tetraploids A. abyssinica and A. vaviloviana and the diploids A. atlantica and A. longiglumis. The short C1 unit class was found in the diploid species carrying the C genome, i.e., A. clauda, A. eriantha, and A. ventricosa, and also in the diploid A. longiglumis, the tetraploids A. insularis and A. maroccana, and all the hexaploid species. The short D1 unit class was found in all the hexaploid species and two clones of A. clauda. It is noteworthy that in previous studies the B genome was found only in tetraploid species and the D genome only in hexaploid species. Unexpectedly, we found that various diploid Avena species contained the B1 and D1 units. The long B1 unit class was found in 3 accessions of the diploid A. atlantica (CN25849, CN25864, and CN25887) collected in Morocco and in 2 accessions of A. longiglumis (CIav9087 and CIav9089) collected in Algeria and Libya, respectively, whereas only 1 clone of A. clauda (CN21378) had the short D1 unit. Thus there might be a clue as to where to search for diploids carrying the B and D genomes. Avena longiglumis was found to be the most diverse species, possibly harboring the A, B, and C haplomes. The long M1 and short M1 are the unit classes typical of A. macrostachya. These results could explain the roles of A. clauda, A. longiglumis, and A. atlantica in the evolution of the genus Avena. Furthermore, one clone of the tetraploid A. murphyi was found to have sequences belonging to the short D1 unit class, which could indicate that A. murphyi might have been the progenitor of hexaploid oats and not, as postulated earlier, A. insularis. The evolution of Avena did not follow the molecular clock. The path inferred is that the C genome is more ancient than the A and B genomes and closer to the genome of A. macrostachya, the only existing perennial, which is presumed to be the most ancestral species in the genus.  相似文献   

7.
B R Baum  T Edwards  D A Johnson 《Génome》2008,51(8):589-598
We have investigated relationships among the three closely related genera Agropyron, Pseudoroegneria, and Douglasdeweya. Based upon grouping of 330 5S rDNA sequences into unit classes, we found that Douglasdeweya, with the genomic constitution PPStSt, has 2 unit classes, the long P1 and short S1, and Pseudoroegneria, with the genomic constitution StSt or StStStSt, has the long S1 and short S1 unit classes. In contrast, only the long P1 unit class was found in species of the genus Agropyron (PP). Having a single unit class is unique among all the genera of the tribe Triticeae investigated so far and may reflect gene loss or lineage sorting during its genesis. The presence of the short S1 and long P1 unit classes confirms the amphiploid origin of Douglasdeweya.  相似文献   

8.
Data is presented on the evolutionary dynamics of non-transcribed spacers (NTSs) of 5S rRNA genes in some diploid and polyploid Triticum and Aegilops species. FISH experiments with probes representing different unit classes revealed presence and (or) absence of these sequences in genomes or separate chromosomes of the species. Among the three diploid species only Aegilops speltoides has all of the different unit classes in ribosomal clusters as detected by the probes. Triticum urartu does not have the long D1 signals and Aegilops tauschii does not have the long A1 signals. Both polyploids possess all types of sequences, but because of genome rearrangements after polyploidization there is significant repatterning of single different rDNA unit classes in chromosomal positions when compared with those in diploid progenitors. Additional refined work is needed to ascertain if the sequences in the polyploids are mixed or are located in mini clusters in close proximity to each other. Mantel tests for association between the presence of the FISH signals of the A, B, and D genomes together and separately with the unit class data of the material, i.e., the probes used in FISH, indicated that all signals were associated with their respective probe material, but that there was no association of the unit classes found and the signals to each haplome. All combinations of the partial Mantel tests, e.g., between the A and B haplomes while controlling the effect of the all probes signals, with correlations ranging from 0.48 to 0.79 were all significant. Principal coordinate analysis showed that the signals of most unit class specific probes were more or less equally distant except for the long (S1 and short G1 signals, which were not different, and that the short A1 signals were closely related to the former two, whereas the signals of the long G1 were even less related.  相似文献   

9.
以礼草属的分类研究   总被引:15,自引:1,他引:14  
以礼草属Kengyilia Yen et J. L. Yang 是禾本科Poaceae小麦族trib.Triticeae中新近建立的屑,针对其存在问题,对它进行了全面清理,提出了一个新的分类系统。新系统含3组、26种、6变种,其中3个组为新设立,并包括1新种、7个新等级、新组合及新异名。此外,还报道了一些类群的分布新记录。  相似文献   

10.
Kengyilia Yen et J L Yang is a recently established genus in trib. Tritieeae of Poaceae. In this paper, this genus is taxonomically revised, and a new taxonomic system is presented. The new system includes 3 sections, 26 species and 6 varieties, of which 3 sections and 1 species are described as new, 7 taxa are treated respectively in the ways of new status or combination and reduction. Three new sections, sect. Kengyilia, sect. Stenachyra L. B. Cai and sect. Hyalolepis (Nevski) L. B. Cai, are differentiated by the length and width of spike, the growing position of spikelet, the relative length of glume, the colour of anther and so on. The sect. Kengyilia contains 9 species, distributed in northwestern China, extending westward to Kazakhstan, Kirghizia, Tadzhikistan, Afghanistan and Iran; the sect. Stenachyra L. B. Cai comprises 10 species and 3 verieties, distributed in western China, mainly in the Qinghai-Xizang Plateau; and the sect. Hyalolepis (Nevski) L. B. Cai consists of about 7 species and 3 varieties, distributed in western China, extending westward to Kirghizia and Tadzhikistan. Twenty-six species of Kengyilia are recognized on the basis of the same criterion of specific concept, and the other taxa below the rank of species are also checked in terms of their external morphology. As a result, Kengyilia pen~ dula L. B. Cai is reported as a new species; K. hirsuta var. obviaristata L. B. Cai is raised to a species; K. melanthera (Keng) J. L. Yang, Yen et Baum is reduced to a variety under K. thoroldiana (Oliver) J. L. Yang, Yen et Baum; Roegneria hirsuta var. leiophylla Keng et S. L. Chen is reduced as a synonym of K. hirsuta var. hirsuta; Agropyron thoroldianum var. lasciusculum Melderis is reduced to K. grandiglumis (Keng et S. L. Chen) J. L. Yang, Yen et Baum; Roegneria rigidula var. intermedia Keng et S. L. Chen to K. rigidula (Keng et S. L. Chen) J. L. Yang, Yen et Baum; R. hirsuta var. variabilis Keng et S. L. Chen and R. rnelanthera var. tahopaica Keng et S. L. Chen to K. hirsuta (Keng et S. L. Chen)J. L. Yang, Yen et Baum. In addition, new records onthe geographical distributions of some taxa are also reported in this paper.  相似文献   

11.
P Reddy  R Appels 《Génome》1989,32(3):457-467
The 5S RNA genes in Secale sp. are arranged as tandem arrays of a 460- and 480-bp repeating sequence. These size classes were initially discovered by restriction endonuclease analysis using BamHI and subsequently by DNA sequencing of cloned units. The length variation between short and long units originated from major deletion-insertion events in the noncoding spacer region of the 5S DNA repeat units. In situ hybridization with [3H]cRNA and biotin-labelled probes synthesized from both the short and long 5S DNA units of S. cereale localized the sites on chromosome 1R and a new site on a chromosome identified as 5R. We propose that the chromosome 1R locus, which has been mapped previously, be named 5SDna-R1 and the second locus, reported in the present paper, be referred to as 5SDna-R2. A preferential hybridization of a probe from the long unit to the 5SDna-R2 locus and of a probe from the short unit to the 5SDna-R1 locus is reported. The clustering of long units in the 5SDna-R2 locus was confirmed by restriction endonuclease digestion of DNA from rye chromosome 5R additions to wheat. Nucleotide sequence alignment of 5S DNA repeat units from a number of Secale species, using both phenetic and cladistic computer programmes, demonstrated that two clear lineages corresponding to the long and short units existed in this genus. The different Secale species could not be unambiguously differentiated using the 5S DNA sequences.  相似文献   

12.
The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population expansion might result in the difference in the d(N)/d(S) value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.  相似文献   

13.
14.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

15.
Length and sequence heterogeneity in 5S rDNA of Populus deltoides.   总被引:1,自引:0,他引:1  
The 5S rRNA genes and their associated non-transcribed spacer (NTS) regions are present as repeat units arranged in tandem arrays in plant genomes. Length heterogeneity in 5S rDNA repeats was previously identified in Populus deltoides and was also observed in the present study. Primers were designed to amplify the 5S rDNA NTS variants from the P. deltoides genome. The PCR-amplified products from the two accessions of P. deltoides (G3 and G48) suggested the presence of length heterogeneity of 5S rDNA units within and among accessions, and the size of the spacers ranged from 385 to 434 bp. Sequence analysis of the non-transcribed spacer (NTS) revealed two distinct classes of 5S rDNA within both accessions: class 1, which contained GAA trinucleotide microsatellite repeats, and class 2, which lacked the repeats. The class 1 spacer shows length variation owing to the microsatellite, with two clones exhibiting 10 GAA repeat units and one clone exhibiting 16 such repeat units. However, distance analysis shows that class 1 spacer sequences are highly similar inter se, yielding nucleotide diversity (pi) estimates that are less than 0.15% of those obtained for class 2 spacers (pi = 0.0183 vs. 0.1433, respectively). The presence of microsatellite in the NTS region leading to variation in spacer length is reported and discussed for the first time in P. deltoides.  相似文献   

16.
Liu Q  Ge S  Tang H  Zhang X  Zhu G  Lu BR 《The New phytologist》2006,170(2):411-420
To estimate the phylogenetic relationship of polyploid Elymus in Triticeae, nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F sequences of 45 Elymus accessions containing various genomes were analysed with those of five Pseudoroegneria (St), two Hordeum (H), three Agropyron (P) and two Australopyrum (W) accessions. The ITS sequences revealed a close phylogenetic relationship between the polyploid Elymus and species from the other genera. The ITS and trnL-F trees indicated considerable differentiation of the StY genome species. The trnL-F sequences revealed an especially close relationship of Pseudoroegneria to all Elymus species included. Both the ITS and trnL-F trees suggested multiple origins and recurrent hybridization of Elymus species. The results suggested that: the St, H, P, and W genomes in polyploid Elymus were donated by Pseudoroegneria, Hordeum, Agropyron and Australopyrum, respectively, and the St and Y genomes may have originated from the same ancestor; Pseudoroegneria was the maternal donor of the polyploid Elymus; and some Elymus species showed multiple origin and experienced recurrent hybridization.  相似文献   

17.
Genome constitution and genetic relationships between six Elymus species were assessed by physical mapping of different repetitive sequences using a technique of sequential fluorescence in situ hybridization and genomic in situ hybridization.The six Elymus species are all naturally growing species in northwest China,namely,E.sibiricus,E.nutans,E.barystachyus,E.xiningensis,E.excelsus,and E.dahuricus.An StStHH genome constitution was revealed for E.sibiricus and StStHHYY for the remainder species.Each chromosome could be clearly characterized by physical mapping with 18S-26S rDNA,5S rDNA,Afa-family,and AAG repeats,and be allocated to a certain genome by genomic in situ hybridization.Two 5S rDNA sites,each in the H and St genomes,and three 18S-26S rDNA sites,two in the St genome and one in the Y genome,were uncovered in most of the species.The strong Afa-family hybridization signals discriminated the H genome from the St and Y genomes.The H and Y genome carried more AAG repeats than St.A common non-Robertsonian reciprocal translocation between the H and Y genomes was revealed in E.barystachyus,E.xiningensis,E.excelsus and E.dahuricus.Comparison of molecular karyotypes strongly suggests that they can be classified into three groups,namely,E.sibiricus,E.nutans,and others.  相似文献   

18.
To reveal the maternal donor of species in genus Kengyilia, the chloroplast trnL-F sequences of 14 Kengyilia species and several related diploid species were analyzed by using Maximum Parsimony (MP) and Bayesian Inference (BI) methods. The species in Kengyilia were clustered in different clades, which indicated that Agropyron (P) is the likely maternal genome donor to Kengyilia melanthera, K. mutica and K. thoroldiana, while the maternal donor to Kengyilia batalinii, K. nana, K. kokonorica, K. kaschgarica, K. hirsuta, K. alatavica, K. gobicola, K. zhaosuensis, K. rigidula, K. longiglumis and K. grandiglumis was St or Y Roegneria genome.  相似文献   

19.
The sequence of the amino-terminal region of eleven rat liver ribosomal proteins–S4, S6, S8, L7a, L18, L27, L30, L37a, and L39 - was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.  相似文献   

20.
X M Li  P H Yen    L J Shapiro 《Nucleic acids research》1992,20(5):1117-1122
There are several copies of related sequences on the distal short arm of the human X chromosome and the proximal long arm of the Y chromosome which were originally detected by cross hybridization with a genomic DNA clone, CRI-S232. Recombination between two S232-like sequences flanking the steroid sulfatase locus has been shown to cause frequent deletions in the X chromosome short arm, resulting in steroid sulfatase deficiency. We now report the characterization of several S232-like sequences. Restriction mapping and sequence analysis show that each S232 unit contains 5 kb of unique sequence in addition to two elements, RU1 and RU2, composed of a variable number of tandem repeats. RU1 consists of 30 bp repeating units and its length shows minimal variation between individuals. The RU2 elements in the hypervariable S232 loci on the X chromosome consist of repeating sequences which are highly asymmetric, with about 90% purines and no C's on one strand. The X-derived RU2 elements range from 0.6 kb to over 23 kb among different individuals, accounting entirely for the observed polymorphism at the S232 loci. Although the repeating units of the RU2 elements in the nonpolymorphic S232 loci on the Y chromosome share high sequence homology with those on the X chromosome, they exhibit much higher intrarepeat sequence variation. S232 homologous sequences are found in great apes, old world and new world monkeys. In chimpanzees and gorillas the S232-like sequences are polymorphic in length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号