首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用聚丙烯酰胺凝胶电泳(PAGE)和蔗糖密度梯度超速离心方法分离了假根羽藻(Bryopsis corticulans)的色素-蛋白复合物,并对其特性进行分析。结果表明:采用PAGE分离得到7条色素-蛋白复合物带,分别是CPⅠa1、CPⅠa2、CPⅠ、LHCP1、LHCP2、CPa、LHCP3+3,和2条游离色素(free pigment,FP)FCa、FC。用改进的不连续蔗糖密度梯度离心法分离到五条带。区带Ⅰ是FP;区带Ⅱ主要是小分子量的PSⅡ捕光复合物LHCP3+3;区带Ⅲ以PSⅡ捕光复合物的聚集体LHCP1为主,区带Ⅱ和Ⅲ的吸收光谱中除了Chla外,还含有大量的Chlb和管藻黄素,是管藻黄素-Chla/b-蛋白质复合物;区带Ⅳ在PAGE中只显示一条带,光谱中有Chlb吸收肩峰,含有66和56kDa两种多肽,是较小的PSⅠ复合物CPⅠa。  相似文献   

2.
裙带菜的类囊体膜经过去污剂癸基-N-甲基匍萄糖胺增溶,采用SDS-PAGE分离技术,在Tris-Gly和Tris-硼酸两种电泳系统中分离其色素-蛋白质复合物,并比较其复合物的光谱特性。结果表明:采用Tris-Gly电泳分离系统从裙带菜中分离到8种色食-蛋白质复合物,分别是CP Ia、CPI、LHC1、CPa、LHC2、LHC3、LHC4和LHC5。在Tris-硼酸电泳分离系统中共分离到5种色素-蛋白质复合物,分别是CPI、CPa、LHC1、LHC2、LHC3。吸收光谱和荧光光谱的测定结果表明,两种电泳系统中分离的相对应条带的光谱特性基本相近。  相似文献   

3.
褐藻裙带菜色素蛋白复合物的性质*   总被引:1,自引:0,他引:1  
用去污剂DMG增溶褐藻裙带菜(Undaria pinnatifida)的类囊体膜,通过PAGE分离色素-蛋白复合物并分析其性质,结果表明:CPⅠa和CPⅠ都含有66kDa的多肽,低温荧光发射光谱中有715nm的长波荧光峰,激发光谱测定结果表明CPⅠa是含有墨角藻黄素的叶绿素a/c-蛋白复合物,CPⅠ是只含有叶绿素a的色素-蛋白复合物。CPa含有51、37、34和20kDa四种多肽,低温荧光发射峰位于683nm,激发光谱表明它含有叶绿素a、c和少量墨角藻黄素,是裙带菜的PSⅠ复合物。其余5条为捕光色素-蛋白复合物,它们都是由20kDa的多肽组成,其中LHC1和LHC3有相似的光谱特性,是墨角藻黄素-叶绿素a/c-蛋白复合物,LHC2、LHC4和LHC5的光谱特性相似,是叶绿素a/c-蛋白复合物。  相似文献   

4.
从超声波破碎的蓝藻类囊体膜中分离的叶绿素蛋白复合物   总被引:3,自引:0,他引:3  
当蓝藻的类囊体膜用超声波进行破碎,并在4℃下用聚丙烯酰胺凝胶电泳进行分离,有6条叶绿素带被分离出来,它们分别是 CPIa,CPIb,CP1,CPa1 CPa2,FC。CP1 在红区和蓝区的吸收峰分别位于674和435 nm 处。在液氮甲该组分在725和680 nm 处有两个荧光发射带。CPa1和 CPa2的吸收光谱相似,其红峰和蓝峰的位置分别位于667和431.5nm 处。它们在77 K 的荧光发射峰都位于684 nm 处。用超声破碎法分离的叶绿素蛋白复合物的光谱特性,除 CPa1和 CPa2在红峰和蓝峰的吸收位置蓝移了3—5 nm 之外,其余与用 SDS 增溶法分离的相应复合物相似。属于光系统Ⅰ的 CPIa-CPI 的叶绿素含量占总叶绿素的40.93%,而属于光系统Ⅱ的 CPa1和 CPa2的叶绿素则占总叶绿素的38.78%,二者之差仅有2.15%。  相似文献   

5.
当蓝藻的囊状体膜在SDS与叶绿素之比为10:1的条件下增溶后,经不连续的SDS-聚丙烯酰胺凝胶电泳分离出六条含叶绿素的带。按照电泳迁移率增加的顺序,以及吸收光谱和荧光光谱的鉴定结果,自上而下分别命名为CP1a,CP1b,CP1c,CP1,CPa和FC。 CP1a,CP1b,CP1c和CP1四种复合体在蓝区和红区的吸收峰分别位于435 nm和675 nm处。该四种复合体在77°K的荧光发射峰位于726~728 nm。铁氰化钾-抗坏血酸氧化还原差异光谱证明这四种复合体都含有 P 700, 说明它们属于光系统Ⅰ反应中心复合体。低温荧光激发光谱表明这些复合体在625~626 nm,677 nm,690~692 nm和712~714 nm处有四个共同的荧光激发峰或肩。根据其E677/E714的比值,可将它们分为CP1a,CP1b和CP1c,CP1两种类型。它们之间的差异在于这两类复合体之间不同状态的色素比例明显不同。 第五种叶绿素蛋白复合体CPa在蓝区的吸收峰位于435nm处,在红区的吸收峰位于672nm处,CPa在77°K的荧光发射峰位于686 nm处,另外在690~696nm范围内还有一个较弱的肩。它属于光系统Ⅱ反应中心复合体。它仅存在于营养胞中。 异形胞中只有光系统Ⅰ反应中心复合体。  相似文献   

6.
当突变种大麦Chlorina-f 2的类囊体膜在SDS/叶绿素的重量比为10:1,叶绿素的浓度为0.5mg/ml的条件下增溶,并在SDS-聚丙烯酰胺凝胶电泳中进行分离时,共出现4条含叶绿素的带。按电泳迁移率的增加,这些带分别是CP Ⅰ,CPa 1,CPa 2和FC。光谱测定表明CP Ⅰ为混有少量光系统Ⅱ??成分的光系统Ⅰ反应中心复合体,CPa 2为光系统Ⅱ反应中心复合体,CPa 2为光系统Ⅱ内周天线复合体。属于光系统Ⅰ的CP Ⅰ的叶绿素含量占总叶绿素的45.6%,而属于光系统Ⅱ的CPa Ⅰ和CPa 2的叶绿素之和则占总叶绿素的43.2%。可见在缺b大麦中,两个都失缺其外周天线的光系统的叶绿素含量是基本相等的。这和光合作用中两个光反应相互串联的理论是完全一致的。  相似文献   

7.
发菜类囊体膜色素蛋白复合物分离及其光谱性质的研究   总被引:4,自引:0,他引:4  
采用改进的Allen’s的绿胶系统,首次对陆生蓝藻发菜(Nostoc flagelliforme Born.et Flah.)类囊体膜色素蛋白复合物进行了分离,共分离出了11条绿色的色素蛋白复合物条带。两条浅黄色的条带。其中7条绿色条带属于PSⅠ组分,4条绿色条带属于PSⅡ组分,1条浅黄色条带经光谱分析初步认定为类胡萝卜素蛋白复合物,而另一条浅黄色条带为游离色素。  相似文献   

8.
海洋管藻目绿藻刺松藻光系统Ⅰ复合物的分离   总被引:3,自引:0,他引:3  
采用Triton X-100蔗糖密度梯度离心法,从管藻目绿藻刺松藻中分离到三种不同形式的光系统Ⅰ(PSⅠ)复合物.区带Ⅲ富含PSⅠ核心复合物(CCⅠ),叶绿素(Chl)a/b>20,在温和的聚丙烯酰胺凝胶电泳(PAGE)中只显示一条PSⅠ中心复合物CPⅠ条带.区带Ⅳ和Ⅴ在436和674 nm、467和650 nm以及540 nm的吸收表明,含有Chl a、b及管藻黄素和管藻素,Chl a/b比值分别为3.23和2.4.经PAGE检测,有CPⅠ和CPⅠa两种PSⅠ色素蛋白复合物带,因此区带Ⅳ和Ⅴ是由CCⅠ和含量不等的捕光复合物LHCⅠ构成的PSⅠ颗粒.区带Ⅲ只有66和56 ku两种核心多肽;区带Ⅳ和Ⅴ除了66、56 ku多肽以外,还有4种分子质量为25,26,26.2和27.5 ku的LHCⅠ多肽.室温荧光光谱显示,分离物中的各种光合色素之间保持着良好的能量传递关系,由Chl b及管藻黄素和管藻素吸收的能量都可以传递给Chl a.  相似文献   

9.
对管藻目绿藻刺松藻(Codium fragile (Sur.) Hariot.)的4种主要的捕光复合物LHCP1-3和LHCP3′的多肽组成和相互关系进行了研究.LHCP1在SDS-PAGE中主要呈现34.4、31.5、29.5、28.2和26.5 kD 5种多肽,其中34.4和31.5 kD多肽是高等植物所没有的;LHCP3含有LHCP1中除了34.4 kD多肽以外的其他4种多肽,而LHCP3′只含有28.2和26.5 kD两种多肽.若LHCP1不经处理直接进行SDS-PAGE,发现较易从LHCP1上脱落的是34.4、28.2和26.5 kD多肽,这表明它们可能位于较外侧,而31.5和29.5 kD多肽则靠近核心;28和26 kD两种多肽常出现在刺松藻的中心复合物CPa中,可能是与CCⅡ结合最为紧密的LHCⅡ多肽.根据上述结果提出了1个LHCP1多肽结构关系示意图.  相似文献   

10.
对管藻目绿藻刺松藻 (Codiumfragile (Sur.)Hariot.)的 4种主要的捕光复合物LHCP1-3 和LHCP3′的多肽组成和相互关系进行了研究。LHCP1在SDS_PAGE中主要呈现 34 .4、31.5、2 9.5、2 8.2和 2 6 .5kD 5种多肽 ,其中 34 .4和31.5kD多肽是高等植物所没有的 ;LHCP3 含有LHCP1中除了 34 .4kD多肽以外的其他 4种多肽 ,而LHCP3′只含有2 8.2和 2 6 .5kD两种多肽。若LHCP1不经处理直接进行SDS_PAGE ,发现较易从LHCP1上脱落的是 34 .4、2 8.2和2 6 .5kD多肽 ,这表明它们可能位于较外侧 ,而 31.5和 2 9.5kD多肽则靠近核心 ;2 8和 2 6kD两种多肽常出现在刺松藻的中心复合物CPa中 ,可能是与CCⅡ结合最为紧密的LHCⅡ多肽。根据上述结果提出了 1个LHCP1多肽结构关系示意图  相似文献   

11.
用光合膜片增溶和SDS-聚丙烯酰胺凝胶电泳方法,从固氮蓝藻Anabaena sp.7120分离到7条色素带。迁移率较慢的五条叶绿素蛋白复合体带,具有相同的吸收光谱和室温荧光光谱特性。它们的红区最大吸收峰在676nm;蓝区最大吸收峰在438nm。它们的室温荧光发射最高峰在672—673nm;在710,732和740nm都有小峰。这些是CPⅠ叶绿素所特有的。我们认为这5条带都是属于光系统Ⅰ的叶绿素蛋白复合体。另一条迁移率稍快的叶绿素蛋白复合体带为CPⅡ。它的红区最大吸收峰在672nm;蓝区最大吸收峰在436nm。与CPⅠ带相比,两个峰均向短波端偏移。它们的室温荧光发射最高峰在675nm,没有CPⅠ所特有的小峰。这些性质说明此带和CPⅠ带不同,而是和光系统Ⅱ反应中心相关的一个复合体。迁移率最快的带是游离色素带。  相似文献   

12.
采用了Φ6 cm柱状光生物反应器,在不同氮素营养条件(17.6 mmol/L N、8.8 mmol/L N、5.87 mmol/L N、0 mmol/L N)下通气培养硅藻金色奥杜藻[Odontella aurita(Bacillariophyceae;Centricae)],分析探讨藻细胞的光合生理及生长状况与氮素营养水平的关系。结果表明,不同氮素实验组藻细胞达到最大生长的时间明显差异,与对照组(17.6 mmol/L)相比,氮限制(5.87mmol/L N、8.8 mmol/L N)在培养的前期对金色奥杜藻的生长具有促进作用,氮饥饿(0 mmol/L)显著抑制藻细胞生长(P<0.05)。氮限制实验组藻细胞总碳水化合物的含量显著增加(P<0.05),而总蛋白含量明显下降(P<0.05)。藻细胞叶绿素a、c及总类胡萝卜素含量与培养液的氮素营养水平呈正相关。藻细胞最大光合放氧速率Pm随氮浓度下降而降低,呼吸速率Rd呈现相反趋势,PSⅡ最大光能转化效率(Fv/Fm)、实际光能转化效率(Yield)、潜在活性(Fv/Fo)以及相对电子传递效率(ETR)均随氮素限制而显著下降(P<0.05),说明藻细胞的表观光合生理状况与氮素营养水平直接相关。  相似文献   

13.
比较了柱孢鱼腥藻(Anabaena cylindrica)营养细胞和异形胞类囊体膜叶绿素蛋白复合体的种类和性质。以SDS增溶营养细胞类囊体膜和不连续聚丙烯酰胺电泳分离得到4个P700叶绿素a蛋白复合体,分别为GPIa、CPIb、CPIc和CPI;和1个系统Ⅱ叶绿素蛋白复合体CPa。相对迁移率小的4个复合体含有P700,呼收光谱红区吸收峰为675nm,液氮低温荧光发射光谱有728nm荧光发射峰。CPIa和CPI的分量子分别为205 和105千道尔顿。未见诸文献的CPIb和CPIc复合体的分子量介于CPIa和CPI之间。相对迁移率较大的CPa有着吸收光谱红区672nm吸收峰,液氮低温荧光发射光谱有687nm荧光发射峰,分子量为56千道尔顿。同时化学氧化还原差示光谱不表现P700吸收降低。柱孢鱼腥藻异形胞类囊体膜经SDS增溶和电泳分离得到2个系统Ⅰ叶绿素蛋白复合体,它们的吸收光谱特性和分子量大小相近于营养细胞分离的CPIa和CPI复合体。异形胞类囊体膜缺少系统Ⅱ叶绿索蛋白复合体。  相似文献   

14.
用光合膜片增溶和SDS-聚丙烯酰胺凝胶电泳方法,从固氮蓝藻Anabaena sp.7120分离到7条色素带。迁移率较慢的五条叶绿素蛋白复合体带,具有相同的吸收光谱和室温荧光光谱特性。它们的红区最大吸收峰在676nm;蓝区最大吸收峰在438nm。它们的室温荧光发射最高峰在672-673nm;在710,732和740nm都有小峰。这些是CPI叶绿素所特有的。我们认为这5条带都是属于光系统Ⅰ的叶绿素蛋白复合体。另一条迁移率稍快的叶绿素蛋白复合体带为CPⅡ。它的红区最大吸收峰在672nm;蓝区最大吸收峰在436nm。与CPⅠ带相比,两个峰均向短波端偏移。它们的室温荧光发射最高峰在675nm,没有CPⅠ所特有的小峰。这些性质说明此带和CPⅠ带不同,而是和光系统Ⅱ反应中心相关的一个复合体。迁移率最快的带是游离色素带。  相似文献   

15.
当将辛基—β—D—吡喃葡萄糖苷的类囊体膜提取液进行凝胶电泳时,有7种叶绿素蛋白复合体被分离出来,它们分别是CPIa,CPI,LHCP~1,CPa1,Cpa2,LHCP~2和LHCP~3。 CPa1和CPa2在红区的吸收峰分别位于674nm和671nm。一阶导数光谱表明这两种复合体都含有叶绿素a和类胡萝卜素,但不含叶绿素b。四阶导数光谱证明CPa1的主要吸收形式为chla-680,而CPa2的主要形式为chl a-670。由77K的荧光发射光谱知道CPa1的荧光发射峰位于695nm,而CPa2的发射峰则位于685nm。LHCP~1和LHCP~3及LHCP~2的主要吸收形式分别为chlb-650和chl a-680。它们的荧光发射峰都位于680—682nm范围内。 可以断定CPa1是光系统Ⅱ反应中心P680-叶绿素a蛋白复合体;CPa2是光系统Ⅱ内周天线叶绿素a蛋白复合体;LHCP~1,LHCP~2和LHCP~3是光系统Ⅱ外周天线叶绿素a/b蛋白复合体。LHCP~2和LHCP~3是两种独立的单体。CPIa和CPI为光系统Ⅰ反应中心复合体。  相似文献   

16.
阳生植物向日葵的叶绿体囊状体膜,用SDS-聚丙烯酰胺凝胶电泳最多可分离出8条含叶绿素带:复合物Ⅰa、Ⅰb、Ⅰc、Ⅱa、Ⅱb、Ⅳ、Ⅱc和游离色素去垢剂复合物Ⅲ。从阴生植物一叶兰只分离出6条含叶绿素带,属光系统Ⅰ的只有一条带(Ⅰc)。向日葵的复合物Ⅳ,从电泳迁移率、吸收光谱、光密度扫描等看来,如最近有的实验室所提出的那样,是与PSⅡ反应中心有关的。一叶兰复合物X的电泳迁移率与向日葵复合物Ⅳ相似,但它不但含Chl a还含有Chl b。它在室温下680nm的荧光发射与复合物Ⅳ十分相似,在所有这些复合物中,它们二者的发射最强。阳生植物(向日葵、菠菜、莴苣)叶绿体的Chl a/b值比阴生植物(一叶兰、广东万年青、吊兰)高,阴生植物(一叶兰)LHCP复合物的量大于阳生植物(向日葵)。并初步看出,阴生植物(一叶兰)LHCP复合物的Chl a/b值也低于阳生植物(向日葵)的相应复合物。  相似文献   

17.
用不连续梯度蔗糖密度超离心,从经Triton X-100增溶的褐藻裙带菜类囊体膜中分离到3种色素蛋白复合物条带,分别是捕光复合物、具有光氧化活性的PSⅡ复合物颗粒(区带Ⅱ)以及PSⅠ(区带Ⅲ)。PSⅡ颗粒经毛地黄皂苷增溶后,再次超离心分离得到3条PSⅡ的亚复合物条带。吸收和荧光激发谱显示其中的区带Ⅱ-1为墨角藻黄素-Chl a/c-蛋白复合物,区带Ⅱ-2为Chl a/c-蛋白复合物,两者都只含20kDa多肽;而鲜绿色的区带Ⅱ-3为不含捕光复合物的活性PSⅡ核心。  相似文献   

18.
氮素水平对小麦幼苗叶绿体色素蛋白复合体含量的影响   总被引:2,自引:1,他引:1  
在水培条件下,研究了不同氮素水平对小麦幼苗叶绿体色素、色素蛋白复合体含量及其光谱特征的影响。结果显示:(1)氮素水平较低时PSⅡ捕光色素蛋白复合体LHCⅡ在24~30 kD范围内的蛋白含量降低,不供氮时,色素蛋白复合体含量最低,而高分子量区域的蛋白组分相对较为稳定,说明氮素水平影响PSⅡ的多肽组分,而对PSⅠ多肽组分的影响相对较小。(2)室温吸收光谱分析表明,氮素水平较低时结合态色素的含量及比例发生改变,影响植物对光的吸收能力;荧光激发及发射光谱的峰值均随氮素浓度的升高而升高,说明增加施氮量时,叶绿体类囊体中受激发的色素分子数目增加,荧光强度也随之增大;叶绿体蛋白含量在16.86 mg.L-1氮素浓度时最大。  相似文献   

19.
主要运用温和电泳和蛋白印迹技术检测了暗培养4天脱绿的衣藻y-1细胞以及转绿后y-1细胞光系统Ⅰ的核心色素蛋白复合物(CPⅠ)和核心叶绿素脱辅基蛋白PsaA/B。暗培养衣藻细胞中,PSⅠ中主要的色素蛋白复合物-CPⅠ完全缺失,然而核心多肽PsaA/B仍有一定量的积累,同时检测不到P700的含量。当脱绿的y-1细胞转移至光照下(50 μmol Photons/m2·s)时,伴随着叶绿素的合成,色素蛋白复合物CPⅠ和PsaA/B脱辅基蛋白的合成也逐渐达到正常水平,叶绿素和PsaA/B蛋白进行组装并形成了具有功能的PSⅠ反应中心, 同时P700的含量也得到恢复。实验证明了光照是形成光合系统色素蛋白复合物的重要前提,叶绿素的合成能够稳定并促进PsaA/B的积累。同时发现,叶绿体基因组编码的PSⅠ核心多肽PsaA/B能够在暗条件下合成,而在高等植物如豌豆、大麦的黄化体中不能合成PsaA/B蛋白,这可能是由于在脱绿的y-1细胞中叶绿体的量并没有发生明显的减少,且仍具有相对完整的大小和形状,而在叶绿体的被膜上具有许多参与光合作用的酶系统。  相似文献   

20.
用不连续梯度蔗糖密度超离心,从经TritonX-100增溶的褐藻裙带菜类囊体膜中分离到3种色素蛋白复合物条带,分别是捕光复合物、具有光氧化活性的PSII复合物颗粒(区带II)以及PSI(区带III)。PSII颗粒经毛地黄皂苷增溶后,再次超离心分离得到3条PSII的亚复合物条带。吸收和荧光激发谱显示其中的区带II-1为墨角藻黄素-Chla/c-蛋白复合物,区带II-2为Chla/c-蛋白复合物,两者都只含20kDa多肽;而鲜绿色的区带II-3为不含捕光复合物的活性PSII核心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号