首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties and role of the enzyme phosphoglycolate phosphatase in the cyanobacterium Coccochloris peniocystis have been investigated. Phosphoglycolate phosphatase was purified 92-fold and had a native molecular mass of approximately 56 kilodaltons. The enzyme demonstrated a broad pH optimum of pH 5.0 to 7.5 and showed a relatively low apparent affinity for substrate (Km = 222 micromolar) when compared to that from higher plants. The enzyme required both an anion and divalent cation for activity. Mn2+ and Mg2+ were effective divalent cations while Cl was the most effective anion tested. The enzyme was specific for phosphoglycolate and did not show any activity toward a variety of organic phosphate esters. Growth of the cells on high CO2 and transfer to air did not result in any significant change in phosphoglycolate phosphatase activity. Competitive inhibition of C. peniocystis triose phosphate isomerase by phosphoglycolate was demonstrated (Ki = 12.9 micromolar). These results indicate the presence of a specific noninducible phosphoglycolate phosphatase whose sole function may be to hydrolyze phosphoglycolate and prevent phosphoglycolate inhibition of triose phosphate isomerase.  相似文献   

2.
β-Maltosylamine has been synthesized for the first time. It is an effective specific inhibitor of sweet potato β-amylase. This result extends the observation that 1-aminoglycosides are specific inhibitors of exoglycosidases which hydrolyze the corresponding glycose and also demonstrates that an enzyme acting with inversion, as well as those acting with retention of anomeric configuration, can be inhibited by glycosylamines. Maltosylamine, which acts as a reversible inhibitor of β-amylase, appears to be directed to the active site since it protects the essential sulfhydryl group of the enzyme from inactivation by N-ethylmaleimide.  相似文献   

3.
Endonuclease WEN1 with apparent molecular mass about 27 kDa isolated from cytoplasmic vesicular fraction of aging coleoptiles of wheat seedlings has expressed site specificity action. This is a first detection and isolation of a site-specific endonuclease from higher eukaryotes, in general, and higher plants, in particular. The enzyme hydrolyzes deoxyri-booligonucleotides of different composition on CNG (N is G, A, C, or T) sites by splitting the phosphodiester bond between C and N nucleotide residues in CNG sequence independent from neighbor nucleotide context except for CCCG. WEN1 prefers to hydrolyze methylated λ phage DNA and double-stranded deoxyribooligonucleotides containing 5-methylcytosine sites (m5CAG, m5CTG) compared with unmethylated substrates. The enzyme is also able to hydrolyze single-stranded substrates, but in this case it splits unmethylated substrates predominantly. Detection in wheat seedlings of WEN1 endonuclease that is site specific, sensitive to the substrate methylation status, and modulated with S-adenosyl-L-methionine indicates that in higher plants restriction-modification systems or some of their elements, at least, may exist.  相似文献   

4.
Fusarium solani f. pisi was shown to grow on the hydroxy fatty acid biopolymer cutin as the sole carbon source. Such growth conditions induced the production of an extracellular cutin depolymerising enzyme. Analysis of products enzymatically derived from labeled cutin by thin-layer chromatography and radio gas-liquid chromatography showed that the Fusarium enzyme released all classes of cutin monomers. This enzyme preparation also catalyzed hydrolysis of several model ester substrates. It did not hydrolyze triacyl glycerol and pancreatic lipase did not hydrolyze cutin, indicating that the Fusarium enzyme is not a nonspecific lipase. With p-nitrophenyl palmitate as the model substrate the enzyme showed a broad pH optimum near 8.5 and it was stimulated by Triton X-100. Maximal stimulation was obtained at 3.7 mg/ ml of the detergent. Apparent Km for p-nitrophenyl palmitate was 1.6 × 10?4m. p-Nitrophenyl esters of C2–C18 acids gave comparable values for Km and V revealing no striking specificity. Treatment with diisopropyl fluorophosphate severely inhibited the enzyme while iodoacetamide and p-chloromercuric benzoate did not affect the enzymatic activity, suggesting that the Fusarium enzyme is a serine hydrolase.  相似文献   

5.
A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hydrolase sequences. ApsC was found to be most active towards phenylalanine β-naphthylamide (F-βNA) and phenylalanine para-nitroanilide (F-pNA), but it also displayed activity towards other amino acids with aromatic side chains coupled to βNA; other amino acids with nonaromatic side chains coupled to either pNA or βNA were not hydrolyzed or were poorly hydrolyzed. ApsC was not able to hydrolyze N-acetylalanine-pNA, a substrate for acyl-peptide hydrolases.  相似文献   

6.
The hemolytic actions of three kinds of phospholipase C on horse and sheep erythrocytes were studied in relation to their hydrolytic activities on the phospholipid components of these red cells. Clostridium novyi (oedematiens) type A phospholipase C hemolyzed horse red cells by hydrolyzing phosphatidylcholine. However, the enzyme did not lyse sheep cells nor did it hydrolyze any phospholipid under the same conditions, although this enzyme hydrolyzed both sphingomyelin and phosphatidylethanolamine in the phospholipid mixture extracted from sheep red cells. Clostridium perfringens phospholipase C hemolyzed not only horse red cells by hydrolyzing phosphatidylcholine but also sheep red cells by hydrolyzing sphingomyelin. Sphingomyelin on sheep red cell membrane was hydrolyzed 10 times faster by this enzyme than that on horse red cell membrane. Pseudomonas aureofaciens phospholipase C hemolyzed horse red cells by attacking phosphatidylcholine and phosphatidylethanolamine. The enzyme did not attack sheep red cells but it did hydrolyze phosphatidylethanolamine in the extracted phospholipid mixture from sheep cells. The hemolytic activity of phospholipase C depends not only on the enzyme and the asymmetric distribution of phospholipids in the erythrocyte membrane but also on the accessibility of the enzymes to the phospholipids in the surface of the membranes. Hemolysis by phospholipase C belongs to a hot-cold type of lysis.  相似文献   

7.
A sucrase from honey bee abdomens was purified to a high state of homogeneity. It was unusual in that it was completely soluble in high concentrations of ammonium sulfate and because curved rather than rectilinear lines were obtained when initial velocity data for at least two substrates were plotted. The action of the enzyme towards a large number of glycosides showed that the enzyme was able to hydrolyze all α-glucosides tested except trehalose and starch. pH Optima of sucrose and p-nitrophenyl-α-d-glucopyranoside differed by 1.0 pH unit. The unusual kinetic patterns which were found seem to be unique to this disaccharidase and were shown to be the result of a combination of hydrolytic and transferolytic activity in which the initial substrate is also a very good acceptor molecule for the transferolytic process. The Km value for hydrolysis was found to be about an order of magnitude lower than for other insect sucrases with the more usual type of kinetic action. Amino acid and amino sugar analyses showed that the sucrase was a glycoprotein which contained glucosamine and either mannosamine or galactosamine. The molecular weight of the enzyme was estimated to be 70,000 or higher and there was no evidence that the enzyme had subunit structure. An s020,w value of 5.3S was determined. The enzyme was quite stable to a series of denaturing conditions and sulfhydryl reacting agents had little effect on the activity.  相似文献   

8.
The Streptomyces coelicolor A3(2) gene SCI11.14c was overexpressed and purified as a His-tagged protein from heterologous host, Streptomyces lividans. The purification procedure resulted in 34.1-fold increase in specific activity with an overall yield of 21.4%. Biochemical and physical properties of the purified enzyme were investigated and it was shown that it possesses (aryl)esterase and a true lipase activity. The enzyme was able to hydrolyze p-nitrophenyl-, α- and β-naphthyl esters and poly(oxyethylene) sorbitan monoesters (Tween 20–80). It showed pronounced activity towards p-nitrophenyl and α- and β-naphthyl esters of C12–C16. Higher activity was observed with α-naphthyl esters. The enzyme hydrolyzed triolein (specific activity: 91.9 U/mg) and a wide range of oils with a preference for those having higher content of linoleic or oleic acid (C18:2; C18:1, cis). The active-site serine specific inhibitor 3,4-dichloroisocoumarin (DCI) strongly inhibited the enzyme, while tetrahydrofurane and 1,4-dioxane significantly increased (2- and 4- fold, respectively) hydrolytic activity of lipase towards p-nitrophenyl caprylate. The enzyme exhibited relatively high temperature optimum (55 °C) and thermal stability. CD analysis revealed predominance of α-helical structure (54% α-helix, 21% β-sheet) and a Tm value at 66 °C.  相似文献   

9.
The cyclic nucleotide phosphodiesterases in crude homogenate, soluble material, and particulate preparations of adult Drosophila melanogaster flies, hydrolyze cyclic AMP with nonlinear kinetics. Cyclic GMP is hydrolyzed by the phosphodiesterases in crude homogenate and soluble material with linear kinetics. Physical separation techniques of gel filtration, velocity sedimentation, and ion-exchange chromatography reveal that Drosophila soluble fraction contains two major forms of cyclic nucleotide phosphodiesterase. Form I hydrolyzes both cyclic AMP and cyclic GMP. Inhibition experiments suggest that the hydrolysis of both cyclic nucleotides by Form I occurs at a single active site. The Km's for hydrolysis of both substrates are about 4 μm. This form has a molecular weight of about 168,000 as estimated by gel nitration. Form II cyclic nucleotide phosphodiesterase is specific for cyclic AMP as substrate. Gel filtration indicates that this form has a molecular weight of about 68,000. The Km for cyclic AMP is about 2 μm.  相似文献   

10.
Salmonella typhimurium apeR mutations lead to overproduction of an outer membrane-associated N-acetyl phenylalanine β-naphthyl ester-cleaving esterase that is encoded by the apeE gene (P. Collin-Osdoby and C. G. Miller, Mol. Gen. Genet. 243:674–680, 1994). This paper reports the cloning and nucleotide sequencing of the S. typhimurium apeE gene as well as some properties of the esterase that it encodes. The predicted product of apeE is a 69.9-kDa protein which is processed to a 67-kDa species by removal of a signal peptide. The predicted amino acid sequence of ApeE indicates that it is a member of the GDSL family of serine esterases/lipases. It is most similar to a lipase excreted by the entomopathogenic bacterium Photorhabdus luminescens. The Salmonella esterase catalyzes the hydrolysis of a variety of fatty acid naphthyl esters and of C6 to C16 fatty acid p-nitrophenyl esters but will not hydrolyze peptide bonds. A rapid diagnostic test reported to be useful in distinguishing Salmonella spp. from related organisms makes use of the ability of Salmonella to hydrolyze the chromogenic ester substrate methyl umbelliferyl caprylate. We report that the apeE gene product is the enzyme in Salmonella uniquely responsible for the hydrolysis of this substrate. Southern blot analysis indicates that Escherichia coli K-12 does not contain a close analog of apeE, and it appears that the apeE gene is contained in a region of DNA present in Salmonella but not in E. coli.  相似文献   

11.
Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells.  相似文献   

12.
13.
The β-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktis wild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianus var. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.  相似文献   

14.
《Gene》1997,195(1):49-53
The phnA gene encoding a novel carbon–phosphorus bond cleavage enzyme, phosphonoacetate hydrolase, from Pseudomonas fluorescens 23F was cloned and expressed in Escherichia coli and Pseudomonas putida. It conferred on the latter host the ability to mineralize phosphonoacetate but on the former the ability to utilize it as sole phosphorus source only. The nucleotide and deduced amino acid sequences of the phnA gene showed no significant homology with any data bank accessions.  相似文献   

15.
We isolated a bacterial strain, Agrobacterium radiobacter P230, which can hydrolyze a wide range of organophosphate (OP) insecticides. A gene encoding a protein involved in OP hydrolysis was cloned from A. radiobacter P230 and sequenced. This gene (called opdA) had sequence similarity to opd, a gene previously shown to encode an OP-hydrolyzing enzyme in Flavobacterium sp. strain ATCC 27551 and Brevundimonas diminuta MG. Insertional mutation of the opdA gene produced a strain lacking the ability to hydrolyze OPs, suggesting that this is the only gene encoding an OP-hydrolyzing enzyme in A. radiobacter P230. The OPH and OpdA proteins, encoded by opd and opdA, respectively, were overexpressed and purified as maltose-binding proteins, and the maltose-binding protein moiety was cleaved and removed. Neither protein was able to hydrolyze the aliphatic OP malathion. The kinetics of the two proteins for diethyl OPs were comparable. For dimethyl OPs, OpdA had a higher kcat than OPH. It was also capable of hydrolyzing the dimethyl OPs phosmet and fenthion, which were not hydrolyzed at detectable levels by OPH.  相似文献   

16.
An aryl β-hexosidase was purified 800-fold from bovine liver. The purified enzyme hydrolyzed p-nitrophenyl glycosylpyranoside derivatives of β-d-galactose, β-d-glucose, β-d-xylose, β-d-mannose, and α-l-arabinose, but did not hydrolyze several other p-nitrophenyl glycosides. The enzyme also catalyzed hydrolysis of a variety of plant arylglucosides. Disaccharides, polysaccharides, glycolipids, glycoproteins, and glycosaminoglycans containing terminal nonreducing β-d-galactopyranosyl or β-d-glucopyranosyl residues were not hydrolyzed. The pH optima for the several substrates tested ranged from 7.0 to 9.5. The purified enzyme was homogeneous by disc gel electrophoresis and had a molecular weight of 41,000 by Sephadex gel filtration and 46,000 by disc gel electrophoresis performed in the presence of sodium dodecyl sulfate. The enzyme readily transferred glycosyl residues from susceptible β-galactosides or β-glucosides to other sugars; the resulting products were not hydrolyzed by the enzyme. Methyl α-d-glucopyranoside was the most efficient carbohydrate acceptor compound tested. The enzyme exhibited a Km for p-nitrophenyl β-d-galactopyranoside of 1.78 × 10?3m and for p-nitrophenyl β-d-glucopyranoside, 2.50 × 10?3m when incubations were conducted in the presence of 0.15 m methyl α-d-glucopyranoside. Aryl β-hexosidase was found in the cytosol of all mammalian livers tested, but could not be detected in liver of birds, reptiles, or fish; low levels were detected in frog liver. Analysis of bovine extracts indicated that the enzyme occurred in liver, kidney, and intestinal mucosa; it was not detected in testis, spleen, serum, or muscle.  相似文献   

17.
An extracellular ribonuclease from Physarum polycephalum cultures was found to hydrolyze Cp-N linkages in T1-oligonucleotides at a much slower rate than Up- or Ap-esters. Hence, it allows the characterization of all (Cp)nNp series (where N is a U, A or G residue). This specificity nicely complements existing methods and therefore is very valuable for nucleotide sequence analysis of T1-oligonucleotides.  相似文献   

18.
Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective.  相似文献   

19.
Epoxide hydrolases (EHs) are α/β-hydrolase fold superfamily enzymes that convert epoxides to 1,2-trans diols. In insects EHs play critical roles in the metabolism of toxic compounds and allelochemicals found in the diet and for the regulation of endogenous juvenile hormones (JHs). In this study we obtained a full-length cDNA, hvmeh1, from the generalist feeder Heliothis virescens that encoded a highly active EH, Hv-mEH1. Of the 10 different EH substrates that were tested, Hv-mEH1 showed the highest specific activity (1180 nmol min?1 mg?1) for a 1,2-disubstituted epoxide-containing fluorescent substrate. This specific activity was more than 25- and 3900-fold higher than that for the general EH substrates cis-stilbene oxide and trans-stilbene oxide, respectively. Although phylogenetic analysis placed Hv-mEH1 in a clade with some lepidopteran JH metabolizing EHs (JHEHs), JH III was a relatively poor substrate for Hv-mEH1. Hv-mEH1 showed a unique substrate selectivity profile for the substrates tested in comparison to those of MsJHEH, a well-characterized JHEH from Manduca sexta, and hmEH, a human microsomal EH. Hv-mEH1 also showed unique enzyme inhibition profiles to JH-like urea, JH-like secondary amide, JH-like primary amide, and non-JH-like primary amide compounds in comparison to MsJHEH and hmEH. Although Hv-mEH1 is capable of metabolizing JH III, our findings suggest that this enzymatic activity does not play a significant role in the metabolism of JH in the caterpillar. The ability of Hv-mEH1 to rapidly hydrolyze 1,2-disubstituted epoxides suggests that it may play roles in the metabolism of fatty acid epoxides such as those that are commonly found in the diet of Heliothis.  相似文献   

20.
The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period which preceded the onset of ricinine biosynthesis by 1 day. The activity of the remainder of the pyridine nucleotide cycle enzymes in the seedlings, as monitored by the specific activity of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase, was similar to that found in the mature green plant. In the roots of Nicotiana rustica, where the pyridine alkaloid nicotine is synthesized, the level of quinolinic acid phosphoribosyltransferase was 38-fold higher than the level of nicotinic acid phosphoribosyltransferase, whereas in most other plants examined, the specific activity of quinolinic acid phosphoribosyltransferase was similar to the level of activity of enzymes in the pyridine nucleotide cycle itself. A positive correlation therefore exists between the specific activity of a de novo pathway enzyme catalyzing pyridine nucleotide biosynthesis in Ricinus communis and Nicotiana rustica and the biosynthesis of ricinine and nicotine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号