首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Isolated fasciculata cells of rat adrenal cortex, when incubated with atrial natriuretic factor (ANF), stimulated the levels of cyclic GMP and corticosterone production in a concentration-dependent manner without a rise in the levels of cyclic AMP. The ANF-dependent elevation of cyclic GMP was rapid, with a detectable increment in 30 s. ANF also stimulated the particulate guanylate cyclase. These results not only indicate the coupling of cyclic GMP and corticosterone production with ANF signal, but also demonstrate that, like the ACTH signal, cyclic AMP is not the mediator of ANF-induced adrenocortical steroidogenesis.  相似文献   

2.
Calcium is required for ACTH stimulated steroidogenesis in adrenal tumor cells in tissue culture. In the absence of calcium, the dose of ACTH required to induce half maximum steroidogenesis was increased 30 fold. In contrast to intact adrenal glands or isolated adrenal cells, high doses of ACTH (50 mU/ml) maximally stimulated steroidogenesis in the absence of calcium. Growth for up to six days in medium with low calcium did not affect basal or ACTH induced steroidogenesis. The addition of calcium to cells incubated with ACTH produced a maximum steroidogenic response in 15 minutes. In contrast to intact adrenal glands, calcium is not required for adenosine-3′,5′-cyclic monophosphate (cyclic AMP) stimulated steroidogenesis in adrenal tumor cells. These experiments support the concept that calcium is important at the level of ACTH-membrane receptor site interaction or activation of adenyl cyclase in adrenal tumor cells.  相似文献   

3.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

4.
The ability of three analogs of ACTH1-24 ([Gln5, Phe9] ACTH1-24, [Gln5, Ala9[Acth1-24, and [Gln5, Lys8, Phe9[ ACTH1-24) embodying tryptophan substitutions to activate the adenylate cyclase system of a bovine adrenal plasma membrane preparation was compared to the effect of the analogs on adenosine 3':5'-monophosphate (cyclic AMP) accumulation and steroidogenesis in viable bovine adrenocortical cells. The results were not comparable. Whereas the analogs antagonized the ACTH1-24-activated membrane cyclase they stimulated cyclic AMP accumulation as well as steroid production of the cells. None of the analogs inhibited steroidogenesis of ACTH1-24-stimulated cells, but two of them, at very high dose levels, inhibited cyclic AMP production. The ability of the analogs to stimulate steroidogenesis of the adrenal cells half-maximally decreased in the order tryptophan greater than phenylalanine greater than alanine, indicating that the aromaticity of the indole ring of tryptophan is necessary for maximal interaction between hormone and receptor. Both the absolute and relative steroidogenic potencies were the same for several analogs when assayed with rat adrenal cells. Although only a small fraction of the cell's potential to produce cyclic AMP was necessary to induce maximum steroid production, the relative activities of a series of analogs were the same for steroidogenesis as for cyclic AMP accumulation. Furthermore, the concentration of cyclic AMP necessary for full steroidogenesis was practically identical for a series of peptides that differed widely in potency. These findings support the postulate that cyclic AMP accumulation and steroidogenesis in adrenocortical cells are coupled processes. The differential behavior of bovine adrenal plasma membranes and bovine adrenocortical cells toward ACTH analogs indicates that structure-function studies using cyclase assays may not reflect events that take place in the intact adrenal or in cell preparations derived therefrom.  相似文献   

5.
M P Mattson  J J Mrotek 《Steroids》1985,46(1):619-637
Using cultured Y-1 mouse adrenal tumor cells which produce 20 alpha-hydroxy-4-pregnen-3-one (20-DHP), it was found that 0.01 mM corticosterone and deoxycorticosterone increased basal and inhibited ACTH-induced 20-DHP production during consecutive 30 and 120 min incubations. Steroid effects were concentration-dependent and reversible. Six other steroids tested did not stimulate 20-DHP production and varied in ability to inhibit ACTH-stimulated steroidogenesis. Experiments demonstrated that 20-DHP production following treatment with cholera toxin, N,0'-dibutyryl cyclic AMP (dbcAMP), or pregnenolone was not inhibited by exogenous steroids. Corticosterone (0.01 mM) increased basal and inhibited ACTH-induced intracellular cyclic AMP (cAMP) production. Cytochalasin D, a microfilament perturbing agent, inhibited steroid-stimulated 20-DHP production, suggesting that ACTH and steroid stimulation mechanisms were similar. These findings taken together suggest that exogenous steroids can alter steroidogenesis by modifying plasma membrane adenylate cyclase activity.  相似文献   

6.
The time course of plasma adrenocorticotrophin (ACTH), adrenal cyclic AMP, adrenal corticosterone, and plasma corticosterone was measured in male Sprague-Dawley rats whose endogenous release of ACTH had been blocked (1) following rapid injections of 100 and 300 ng ACTH/100 g body weight, i.v., (2) during prolonged infusions at rates of 1, 2, and 4 ng ACTH/min per 100 g body weight, and (3) after termination of 30-min infusions at rates extending from 0.06 to 8 ng ACTH/min per 100 g body weight. Following injections, the time course of the variables is similar to the one simulated from our models of adrenal cortical secretion, including the simulation of an intermediate variable of our models of the adrenal cortex cell which was presumed to correspond to cyclic AMP. However, during prolonged infusions there is an unexpected overshoot of adrenal cyclic AMP content whereas adrenal and plasma corticosterone concentrations rise to a steady-state value without overshoot. The total amount of cyclic AMP gradually increases following the three increasing infusion rates of ACTH whereas similar levels of plasma corticosterone concentrations are reached at steady state; therefore the saturation of the adrenal cortical secretion is due to a step ulterior to cyclic AMP formation in the steroidogenesis. After 30-min infusions, plasma corticosterone concentration reaches its maximal value following a rate of ACTH input which evokes only a 4-fold increase in adrenal cyclic AMP content; however, there is a 250-fold increase of adrenal cyclic AMP with respect to control value following the higher rates of infusion of ACTH.  相似文献   

7.
8.
K Moriwaki  Y Itoh  S Iida  K Ichihara 《Life sciences》1982,30(25):2235-2240
Forskolin, a unique diterpene which directly activates the adenylate cyclase, stimulated production of both cyclic AMP and corticosterone in isolated rat adrenal cells, in vitro. This agent also potentiated the action of adrenocorticotropin and/or cholera toxin on cyclic AMP production and steroidogenesis at lower concentrations. It augmented both an early (cyclic AMP production) and a late (steroidogenesis) action of the hormone in the adrenal gland.  相似文献   

9.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

10.
The possible role of membrane sialic acid in the action of ACTH was investigated in rat adrenal cells. After treatment with neuraminidase, the cells showed a diminished steroidogenic response to ACTH while the response to cyclic AMP and dibutyryl cyclic AMP was unaffected. 11β-hydroxylation of deoxycorticosterone (DOC) was also not impaired. Dose response curves for three ACTH peptides (ACTH1–39′, ACTH1–24 and ACTH1–10) with neuraminidase treated cells suggest that sialic acid residues on the glycoproteins of the plasma membrane may either impart affinity to the plasma membrane for ACTH molecule or facilitate transmission of the signal arising from ACTH-receptor interaction to the catalytic site of adenyl cyclase.  相似文献   

11.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected. La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane. La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F-, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

12.
The inhibitory action of dexamethasone on the adrenal steroidogenic response to ACTH was confirmed by im administration of graded doses (5, 10 and 30 ng) of synthetic beta 1-24 ACTH to young adult male rats which had received dexamethasone (0.1 mg/100 g bw) 4 hr prior to sacrifice. Following this, kinetic studies were performed by measuring plasma corticosterone, adrenocortical cyclic AMP and cyclic GMP before and 4, 12 and 30 min after administration of either 10 or 30 ng of ACTH. These doses were selected because their effects could be either completely or partially inhibited by dexamethasone. In rats without dexamethasone all the doses of ACTH which were checked induced an increase in both corticosterone and cyclic AMP and a decrease in cyclic GMP. With the smallest dose of ACTH the earlier administration of dexamethasone resulted in complete suppression of both the steroidogenic response and the cyclic AMP response. With the largest dose of ACTH both responses were diminished. In dexamethasone-treated rats the decrease in cyclic GMP was significantly less pronounced 4 min after ACTH than it was in non-treated rats. These results support the view that cyclic AMP and cyclic GMP might both be concerned with the mechanism of acute adrenal steroidogenesis.  相似文献   

13.
Prostaglandin E was found to increase the formation of cyclic acdenosine 3',5'-monophosphate (cyclic AMP) by renal cortical slices. This increased release of cyclic AMP was not influenced by the absence of Ca2+ in the incubating media. The enhanced production of cyclic AMP was probably mediated by stimulation of membrane-bound adenylate cyclase activity. An increase in adenyl cyclase activity was observed with increasing concentrations of prostaglandin E. Furthermore, prostaglandin E augmented glucose production from alpha-ketoglutarate. This effect on gluconeogenesis was abolished by the removal of Ca2+ from the incubating medium. These effects are similar to those described for parathyroid hormone and suggest that the renal cortex is a prostaglandin-dependent system. Prostaglandin E decreased cyclic AMP production and glucose production (from alpha-ketoglutarate) in response to submaximal doses of parathyroid hormone, suggesting that prostaglandin may be important in modulating the intracelluar action of parathyroid hormone in the kidney cortex.  相似文献   

14.
Effects of ACTH and calcium on cyclic AMP production and steroid output by the zona glomerulosa (the capsular fraction) from the rat adrenal cortex have been studied. Although high concentrations of extracellular calcium potentiated the stimulatory action of ACTH on cyclic AMP and aldosterone output, tetracaine or verapamil inhibited aldosterone output but not cyclic AMP production during ACTH-stimulation. Lanthanum reduced both aldosterone and cyclic AMP accumulation induced by ACTH. These results suggest that an extracellular calcium would be essential in stimulating the capsular steroidogenesis without involvement of the cyclic AMP system.  相似文献   

15.
Corticotropin releasing hormone (CRH) stimulation of ACTH release and cyclic AMP-mediated events involved in the control of ACTH release were compared in sham-operated and adrenalectomized rats. CRH-stimulated adenylate cyclase activity was decreased in pituitary homogenates from adrenalectomized animals. CRH-stimulated cyclic AMP accumulation was essentially abolished and CRH-stimulated cyclic AMP-dependent protein kinase (A-kinase) activity was decreased in freshly prepared anterior pituitary cells from adrenalectomized animals. Basal and CRH-stimulated ACTH release was elevated in these cells. Since ACTH release is increased in adrenalectomized rats despite the down regulation of CRH-linked pituitary mechanisms, we speculate that the site of action of disinhibition by corticosterone of ACTH release (or synthesis) following adrenalectomy is distal to the generation of cyclic AMP and/or that non-CRH mediated mechanisms assume a greater role in ACTH regulation following adrenalectomy.  相似文献   

16.
Platelet aggregation. II. Adenyl cyclase, prostaglandin E1, and calcium   总被引:9,自引:0,他引:9  
In exploration of the proposal that prostaglandin E1 (PGE1) inhibits platelet aggregation via stimulation of adenyl cyclase, the temporal relationship of adenosine cyclic 3',5' monophosphate (cyclic AMP) synthesis and inhibition of ADP-induced aggregation in response to PGE1 was studied. The requirement for calcium in aggregation led to the investigation of the effects of calcium ions on platelet adenyl cyclase activity. PGE1 stimulated the synthesis of cyclic AMP from adenosine-5'-triphosphate-8-14-C by platelet membrane fractions and also increased cyclic AMP synthesis in intact platelets previously incubated for 2 hours with adenosine-14-C. The accumulation of cyclic AMP increased signficiantly at low concentrations of PGE1 and reached a maximum at about 1 mug. Regardless of the inducing agent, calcium ions are an absolute requirement for the aggregation of platelets.  相似文献   

17.
Adrenalectomy increased guanyl cyclase and cyclic GMP phosphodiesterase activities in liver and other rat tissues. Liver guanyl cyclase activities from adrenalectomized rats were increased above those of normal controls according to kinetic analysis, gel filtration, ion-exchange chromatography, discontinuous sucrose gradient fractionation, sulfhydryl inhibition, and secretin activation. The effects of adrenal insufficiency on hepatic guanyl cyclase and cyclic GMP phosphodiesterase were prevented by cortisone acetate administration. Immunoassay of liver and skeletal muscle cyclic GMP after adrenalectomy showed markedly decreased levels in liver, but increased levels in skeletal muscle. In liver and other tissues, basal adenyl cyclase and cyclic AMP phosphodiesterase activities were unaffected by adrenalectomy. Hepatic levels of cyclic AMP were also unchanged by adrenalectomy. Hypophysectomy raised guanyl cyclase activity in liver but had no effect on liver cyclic GMP phosphodiesterase activity. These alterations are discussed in relation to possible glucocorticoid regulation of cyclic GMP metabolism.  相似文献   

18.
We examined the subcellular localization of ACTH (adrenocorticotropic hormone)-induced changes in adrenal phospholipids using dexamethasone-treated rats. In adrenal mitochondrial fraction, ACTH significantly enhanced both concentrations and contents of phosphatidylinositol (37%), phosphatidylcholine (22%), and phosphatidylethanolamine (20%). Other mitochondrial phospholipids including cardiolipin did not change upon administration of ACTH. In adrenal plasma membrane, endoplasmic reticulum, and peroxisomes, no increase in phospholipids was observed. The ACTH-induced increases in mitochondrial phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine were specific to adrenal among tissues tested. These changes were observed specifically in cortical cells rather than medulla. Nonsteroidogenic ACTH fragments and related peptides were unable to induce the change in adrenal mitochondrial phospholipids. From the dose-response profile with ACTH, the changes in mitochondrial phospholipids were closely related to ACTH-dependent stimulation of steroidogenesis. Furthermore, in vitro treatment with cyclic AMP enhanced both concentrations and contents of mitochondrial phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine similar to those by the in vivo administration of ACTH. Both in vivo and in vitro experiments revealed that the hormone-induced changes in mitochondrial phospholipids were sensitive to a protein-synthesis inhibitor, cycloheximide. However, aminoglutethimide and cytochalasin B, which strongly inhibited the hormone-induced formation of corticosterone, did not affect the increases in mitochondrial phospholipids. These results suggest that the hormone-induced increases in these phospholipids occur between ACTH-mediated ribosomal protein synthesis and corticosterone formation.  相似文献   

19.
Dominant mutation Agouti yellow (AY) leads to ectopic overexpression of the Agouti gene and yellow coat color in mice. Furthermore, the mutation Ay increased adrenal response to emotional stress. The study assessed whether pleiotropic effect of the mutation Ay on adrenals function was dependent on sex and age. 3- and 15-week old female C57B1/6J mice of two agouti-genotypes: Ay/a (ectopic Agouti-gene overexpression) and a/a (absence of Agouti-protein), were investigated. Cyclic AMP level (adenylate cyclase activity) and corticosterone production in adrenal isolated cells stimulated by ACTH and dibutyrul cAMP (db-cAMP) were measured. ACTH increased cAMP accumulation to the same extent in Ay/a- and a/a-mouse adrenal cells of both ages. The dibutyrul cAMP-induced corticosterone production was higher in Ay/a than in a/a-mouse adrenal cells of both ages. The ACTH-induced corticosterone production in 3-week- old Ay/a-m/CQ was lower and in 15-week old Ay/a-mice was higher than in a/a-mice of the respective ages. The ACTH- and db-cAMP-induced steroidogenesis was not changed in Ay/a-mice and decreased in a/a-mice with age. Thus, in females as well as in males, the mutation Agouti yellow did not affect adenylate cyclase activity, increased db-cAMP-induced corticosterone production and disturbed development of adrenal cortex.  相似文献   

20.
C Guaza  J Borrell 《Life sciences》1984,35(11):1191-1196
The action of ethanol on adrenal steroidogenesis "in vitro" has been studied. It has been found that ethanol did not change the basal production of corticosterone by dispersed adrenal cells, but significantly reduced its response to ACTH stimulation. It is suggested that the inhibitory action of ethanol on steroidogenesis "in vitro" could have a physiological meaning, because the response to ACTH stimulation of adrenal cells from rats treated "in vivo" with ethanol showed a clear dose-related inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号