首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质SUMO化修饰是一种调控蛋白命运的关键修饰方式, 广泛参与植物生长发育及逆境胁迫响应。SUMO化修饰过程主要由激活酶(E1)-结合酶(E2)-连接酶(E3)组成的级联酶促反应催化, 其关键酶组分将SUMO分子缀合至底物蛋白的赖氨酸残基, 形成共价异肽键以完成SUMO化修饰过程。该文报道了1种植物蛋白质SUMO化修饰体外高效检测系统, 通过在大肠杆菌(Escherichia coli)中构建拟南芥(Arabidopsis thaliana) SUMO化修饰的关键通路实现对底物蛋白的SUMO化修饰, 结果可通过免疫印迹进行检测。该系统可以简化植物蛋白质SUMO化修饰的检测流程, 为植物细胞SUMO化修饰的功能研究提供了有力工具。  相似文献   

2.
3.
Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants.  相似文献   

4.
Nonradioactive detection methods for DNA, RNA, and protein analysis have been the subject of research for several years. In this paper the application of the digoxigenin nucleic acid labeling system, in combination with the new alkaline phosphatase substrate 3-(2'-spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)-phenyl -1,2-dioxetane, to the special requirements of the analysis of transgenic plants is described. Earlier detection systems lacked the required ultrasensitive limits of detection necessary because of the large genomes found in plant cells. Routine detection of single-copy genes from transgenic plant species requires the detection of bands of picograms of specific DNA, which is easily achieved by employing the AMPPD substrate. Optimal conditions of genomic Southern analysis have been successfully adapted for Northern blotting techniques. Detection of foreign proteins in transgenic plants has proven difficult because of the very small amounts of detectable specific protein. Until now, utilization of biotinylated antibodies in combination with a streptavidin-alkaline phosphatase conjugate has been the most sensitive procedure. By introducing the AMPPD substrate, a further significant enhancement of sensitivity leading to detectable signals in the picogram range can be obtained.  相似文献   

5.
Proteomic analyses of fruits are confronted with a series of specific obstacles: a general low protein content in plant tissues, allergen extraction from highly complex matrices and protein determination in the presence of interfering compounds. Different methods are currently being introduced to achieve higher protein yields and a simultaneous removal of interfering substances, such as polyphenols and polysaccharides. However, no universal protocol suitable for protein purification from any given plant species is available. Protein profiling by 2DE-western blotting offers a powerful tool for the detection and characterization of known and novel plant allergens. Moreover, the detection of IgE-reactive proteins from fruits is improved by combining western blot and alternative visualization techniques. The recent developments in bioinformatics and databases facilitate the interpretation of profiling studies with regard to novel potential fruit allergens.  相似文献   

6.
Proteomic analyses of fruits are confronted with a series of specific obstacles: a general low protein content in plant tissues, allergen extraction from highly complex matrices and protein determination in the presence of interfering compounds. Different methods are currently being introduced to achieve higher protein yields and a simultaneous removal of interfering substances, such as polyphenols and polysaccharides. However, no universal protocol suitable for protein purification from any given plant species is available. Protein profiling by 2DE-western blotting offers a powerful tool for the detection and characterization of known and novel plant allergens. Moreover, the detection of IgE-reactive proteins from fruits is improved by combining western blot and alternative visualization techniques. The recent developments in bioinformatics and databases facilitate the interpretation of profiling studies with regard to novel potential fruit allergens.  相似文献   

7.
The proteome of a membrane compartment has been investigated by de novo sequence analysis after tryptic in gel digestion. Protein complexes and corresponding protein subunits were separated by a 2-D Blue Native (BN)/SDS-PAGE system. The transmembrane proteins of thylakoid membranes from a higher plant (Hordeum vulgare L.) were identified by the primary sequence of hydrophilic intermembrane peptide domains using nano ESI-MS/MS-analysis. Peptide analysis revealed that lysine residues of membrane proteins are primarily situated in the intermembrane domains. We concluded that esterification of lysine residues with fluorescent dyes may open the opportunity to label membrane proteins still localized in native protein complexes within the membrane phase. We demonstrate that covalent labelling of membrane proteins with the fluorescent dye Cy3 allows high sensitive visualization of protein complexes after 2-D BN/SDS-PAGE. We show that pre-electrophoretic labelling of protein subunits supplements detection of proteins by post-electrophoretic staining with silver and CBB and assists in completing the identification of the membrane proteome.  相似文献   

8.
Recent development of the phosphate chelator, Phos-tag, together with Phos-tag pendant reagents, has provided new methods for detection of phosphorylated serine, threonine, tyrosine, and histidine residues in phosphoproteins. We have investigated the use of Phos-tag for detection and quantification of phospho-aspartate in response regulator proteins that function within two-component signaling systems. Alternative methods are especially important, because the labile nature of the acylphosphate bond in response regulator proteins has restricted the application of many traditional methods of phosphoprotein analysis. We demonstrate that Phos-tag gel stain can be used to detect phospho-Asp in response regulators and that Phos-tag acrylamide gel electrophoresis can be used to separate phosphorylated and unphosphorylated forms of response regulator proteins. The latter method, coupled to Western blot analysis, enables detection of specific phosphorylated proteins in complex mixtures such as cell lysates. Standards of phosphorylated proteins can be used to correct for hydrolysis of the labile phospho-Asp bond that invariably occurs during analysis. We have employed Phos-tag methods to characterize the phosphorylation state of the Escherichia coli response regulator PhoB both in vitro, using purified protein, and in vivo, by analyzing lysates of cells grown under different conditions of induction of the PhoR/PhoB phosphate assimilation pathway.  相似文献   

9.
10.
Measurement of total protein in plant samples in the presence of tannins   总被引:1,自引:0,他引:1  
A method for measuring total protein in situ in plant samples has been developed using the determination of amino acids released by acid hydrolysis of dried plant material. Standard proteins and plant samples were hydrolyzed with 3% sulfuric acid at 100 degrees C for 24 h and the amino acids released were measured with ninhydrin. Unhydrolyzed plant extracts were also analyzed for free amino acids with ninhydrin. Total amino acid equivalents (protein plus free amino acids) of a diverse set of plant samples was significantly correlated with total protein as estimated by elemental analysis (N X 6.25). The Lowry method as modified by precipitation of proteins with trichloroacetic acid was found to be unsatisfactory for dried plant samples due to the incomplete extractability of proteins. Although some alkaloids caused increased absorbance with ninhydrin, interference with quantification of protein is likely to be minimal. Tannins interfered with the Lowry and Bradford methods but not the ninhydrin method.  相似文献   

11.
12.
Enzyme discovery in individual strains of microorganisms is compromised by the limitations of pure culturing. In principle, metaproteomics allows for fractionation and study of different parts of the protein complement but has hitherto mainly been used to identify intracellular proteins. However, the extracellular environment is also expected to comprise a wealth of information regarding important proteins. An absolute requirement for metaproteomic studies of protein expression, and irrespective of downstream methods for analysis, is that sample preparation methods provide clean, concentrated and representative samples of the protein complement. A battery of methods for concentration, extraction, precipitation and resolubilization of proteins in the extracellular environment of a constructed microbial community was assessed by means of 2D gel electrophoresis and image analysis to elucidate whether it is possible to make the extracellular protein complement available for metaproteomic analysis. Most methods failed to provide pure samples and therefore negatively influenced protein gel migration and gel background clarity. However, one direct precipitation method (TCA-DOC/acetone) and one extraction/precipitation method (phenol/methanol) provided complementary high quality 2D gels that allowed for high spot detection ability and thereby also spot detection of less abundant extracellular proteins.  相似文献   

13.
The protein constituents of serum can range from grams to picograms per liter, making it technically difficult to achieve in-depth proteomic analysis. Removal of highly abundant proteins, such as albumin, coupled to powerful protein separation methods is required for increased sample load, thus facilitating detection and identification of low-abundant proteins. We report here a chemical-based extraction method for the effective and specific removal of albumin from serum.  相似文献   

14.
15.
In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.  相似文献   

16.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

17.
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.  相似文献   

18.
Homology detection and protein structure prediction are central themes in bioinformatics. Establishment of relationship between protein sequences or prediction of their structure by sequence comparison methods finds limitations when there is low sequence similarity. Recent works demonstrate that the use of profiles improves homology detection and protein structure prediction. Profiles can be inferred from protein multiple alignments using different approaches. The "Conservatism-of-Conservatism" is an effective profile analysis method to identify structural features between proteins having the same fold but no detectable sequence similarity. The information obtained from protein multiple alignments varies according to the amino acid classification employed to calculate the profile. In this work, we calculated entropy profiles from PSI-BLAST-derived multiple alignments and used different amino acid classifications summarizing almost 500 different attributes. These entropy profiles were converted into pseudocodes which were compared using the FASTA program with an ad-hoc matrix. We tested the performance of our method to identify relationships between proteins with similar fold using a nonredundant subset of sequences having less than 40% of identity. We then compared our results using Coverage Versus Error per query curves, to those obtained by methods like PSI-BLAST, COMPASS and HHSEARCH. Our method, named HIP (Homology Identification with Profiles) presented higher accuracy detecting relationships between proteins with the same fold. The use of different amino acid classifications reflecting a large number of amino acid attributes, improved the recognition of distantly related folds. We propose the use of pseudocodes representing profile information as a fast and powerful tool for homology detection, fold assignment and analysis of evolutionary information enclosed in protein profiles.  相似文献   

19.
Determining which proteins are actively synthesized at a given point in time and extracting a representative sample for analysis is important to understand plant responses. Here we show that the methionine (Met) analogue homopropargylglycine (HPG) enables Bio-Orthogonal Non-Canonical Amino acid Tagging (BONCAT) of a small sample of the proteins being synthesized in Arabidopsis plants or cell cultures, facilitating their click-chemistry enrichment for analysis. The sites of HPG incorporation could be confirmed by peptide mass spectrometry at Met sites throughout protein amino acid sequences and correlation with independent studies of protein labelling with 15N verified the data. We provide evidence that HPG-based BONCAT tags a better sample of nascent plant proteins than azidohomoalanine (AHA)-based BONCAT in Arabidopsis and show that the AHA induction of Met metabolism and greater inhibition of cell growth rate than HPG probably limits AHA incorporation at Met sites in Arabidopsis. We show HPG-based BONCAT provides a verifiable method for sampling, which plant proteins are being synthesized at a given time point and enriches a small portion of new protein molecules from the bulk protein pool for identification, quantitation and subsequent biochemical analysis. Enriched nascent polypeptides samples were found to contain significantly fewer common post-translationally modified residues than the same proteins from whole plant extracts, providing evidence for age-related accumulation of post-translational modifications in plants.  相似文献   

20.

NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号