首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains outside the virus budding sites (50 to 100 nm) were smaller than those at sites of virus budding (approximately 560 nm). Glycoprotein (G protein) and M protein microdomains were not colocalized in the plasma membrane outside the virus budding sites, nor was M protein colocalized with microdomains containing the host protein CD4, which efficiently forms pseudotypes with VSV envelopes. These results suggest that separate membrane microdomains containing either viral or host proteins cluster or merge to form virus budding sites. We also determined whether G protein or M protein was colocalized with VSV nucleocapsid protein (N protein) outside the budding sites. Viral nucleocapsids were observed to cluster in regions of the cytoplasm close to the plasma membrane. Membrane-associated N protein was colocalized with G protein in regions of plasma membrane of approximately 600 nm. In contrast to the case for G protein, M protein was not colocalized with these areas of nucleocapsid accumulation. These results suggest a new model of virus assembly in which an interaction of VSV nucleocapsids with G-protein-containing microdomains is a precursor to the formation of viral budding sites.  相似文献   

2.
In vitro reassembly of vesicular stomatitis virus skeletons.   总被引:19,自引:11,他引:8       下载免费PDF全文
  相似文献   

3.
The nucleocapsid of the enveloped double-stranded RNA bacteriophage phi 6 was isolated by extraction with the nonionic detergent Triton X-114 and subjected to disruption analysis with chelating and protein-denaturing agents. The subnucleocapsid particles were separated in rate-zonal sucrose gradients, and their ultrastructure and protein composition were analyzed. The role of divalent cations in the nucleocapsid structure was studied by using a precipitation assay of the isolated nucleocapsid proteins. The phi 6 nucleocapsid had a cagelike skeleton consisting of a single polypeptide species (P1). Two other proteins (P2 and P4) were associated with the P1 cage. These three early proteins were previously known to be involved in the RNA synthesis machinery of the virus. The stability of the nucleocapsid surface lattice consisting of protein P8 was dependent on Ca2+ ions.  相似文献   

4.
Baculovirus and vaccinia virus vectors were used to express the small (S) and medium (M) genome segments of Hantaan virus. Expression of the complete S or M segments yielded proteins electrophoretically indistinguishable from Hantaan virus nucleocapsid protein or envelope glycoproteins (G1 and G2), and expression of portions of the M segment, encoding either G1 or G2 alone, similarly yielded proteins which closely resembled authentic Hantaan virus proteins. The expressed envelope proteins retained all antigenic sites defined by a panel of monoclonal antibodies to Hantaan virus G1 and G2 and elicited antibodies in animals which reacted with authentic viral proteins. A Hantaan virus infectivity challenge model in hamsters was used to assay induction of protective immunity by the recombinant-expressed proteins. Recombinants expressing both G1 and G2 induced higher titer antibody responses than those expressing only G1 or G2 and protected most animals from infection with Hantaan virus. Baculovirus recombinants expressing only nucleocapsid protein also appeared to protect some animals from challenge. Passively transferred neutralizing monoclonal antibodies similarly prevented infection, suggesting that an antibody response alone is sufficient for immunity to Hantaan virus.  相似文献   

5.
The interaction of Sendai viral proteins with the membranes of infected cells during budding of progeny virions was studied. BHK cells infected with Sendai virus were labeled with [35S]methionine, and the plasma membranes were purified on polycationic polyacrylamide beads. The isolated membranes were incubated with various agents which perturb protein structure to dissociate viral proteins from the membranes. Incubation of membranes with thiocyanate and guanidine removed both the M and nucleocapsid proteins. Urea (6 M) removed the nucleocapsid proteins but removed M protein only in the presence of 0.1 or 1.0 M KCl. In contrast, high salt concentrations alone eluted only the M protein, leaving the nucleocapsid proteins completely membrane bound. About 65% of the M protein was eluted in the presence of 4 M KCl. The remaining membrane-associated M protein was resistant to further extraction by 4 M KCl. Thus, M protein forms two types of interaction with the membrane, one of them being a more extensive association with the membrane than the other.  相似文献   

6.
The architecture of transmissible gastroenteritis coronavirus includes three different structural levels, the envelope, an internal core, and the nucleocapsid that is released when the core is disrupted. Starting from purified virions, core structures have been reproducibly isolated as independent entities. The cores were stabilized at basic pH and by the presence of divalent cations, with Mg(2+) ions more effectively contributing to core stability. Core structures showed high resistance to different concentrations of detergents, reducing agents, and urea and low concentrations of monovalent ions (<200 mM). Cores were composed of the nucleoprotein, RNA, and the C domain of the membrane (M) protein. At high salt concentrations (200 to 300 mM), the M protein was no longer associated with the nucleocapsid, which resulted in destruction of the core structure. A specific ionic interaction between the M protein carboxy terminus and the nucleocapsid was demonstrated using three complementary approaches: (i) a binding assay performed between a collection of M protein amino acid substitution or deletion mutants and purified nucleocapsids that led to the identification of a 16-amino-acid (aa) domain (aa 237 to 252) as being responsible for binding the M protein to the nucleocapsid; (ii) the specific inhibition of this binding by monoclonal antibodies (MAbs) binding to a carboxy-terminal M protein domain close to the indicated peptide but not by MAbs specific for the M protein amino terminus; and (iii) a 26-residue peptide, including the predicted sequence (aa 237 to 252), which specifically inhibited the binding. Direct binding of the M protein to the nucleoprotein was predicted, since degradation of the exposed RNA by RNase treatment did not affect the binding. It is proposed that the M protein is embedded within the virus membrane and that the C region, exposed to the interior face of the virion in a population of these molecules, interacts with the nucleocapsid to which it is anchored, forming the core. Only the C region of the M protein is part of the core.  相似文献   

7.
Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.  相似文献   

8.
The purpose of these experiments was to study the physical structure of the nucleocapsid-M protein complex of vesicular stomatitis virus by analysis of nucleocapsid binding by wild-type and mutant M proteins and by limited proteolysis. We used the temperature-sensitive M protein mutant tsO23 and six temperature-stable revertants of tsO23 to test the effect of sequence changes on M protein binding to the nucleocapsid as a function of NaCl concentration. The results showed that M proteins from wild-type, mutant, and three of the revertant viruses had similar NaCl titration curves, while the curve for M proteins from the other three revertants differed significantly. The altered NaCl dependence of M protein was correlated with a single amino acid substitution from Phe to Leu at position 111 compared with the original temperature-sensitive mutant and was not correlated with a substitution of Gly to Glu at position 21 in tsO23 and the revertants. To determine whether protease cleavage sites in the M protein were protected by interaction with the nucleocapsid, nucleocapsid-M protein complexes were subjected to limited proteolysis with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. The initial trypsin and chymotrypsin cleavage sites, located after amino acids 19 and 20, respectively, were as accessible to proteases when M protein was bound to the nucleocapsid as when it was purified, indicating that this region of the protein does not interact directly with the nucleocapsid. Furthermore, trypsin or chymotrypsin treatment released the M protein fragments from the nucleocapsid, presumably due to conformational changes following proteolysis. V8 protease cleaved the M protein at position 34 or 50, producing two distinct fragments. The M protein fragment produced by V8 protease cleavage at position 34 remained associated with the nucleocapsid, while the fragment produced by cleavage at position 50 was released from the nucleocapsid. These results suggest that the amino-terminal region of the M protein around amino acid 20 does not interact directly with the nucleocapsid and that conformational changes resulting from single-amino-acid substitutions at other sites in the M protein are important for this interaction.  相似文献   

9.
RNA ligands that bind to the human immunodeficiency virus type-1 (HIV-1) gag polyprotein with 10(-9) M affinity were isolated from a complex pool of RNAs using an in vitro selection method. The ligands bind to two different regions within gag, either to the matrix protein or to the nucleocapsid protein. Binding of a matrix ligand to gag did not interfere with the binding of a nucleocapsid ligand, and binding of a nucleocapsid ligand to gag did not interfere with the binding of a matrix ligand. However, binding of a nucleocapsid ligand to gag did interfere with binding of an RNA containing the HIV-1 RNA packaging element (psi), even though the sequence of the nucleocapsid ligand is not similar topsi. The minimal sequences required for the ligands to bind to matrix or nucleocapsid were determined. Minimal nucleocapsid ligands are predicted to form a stem-loop structure that has a self-complementary sequence at one end. Minimal matrix ligands are predicted to form a different stem-loop structure that has a CAARU loop sequence. The properties of these RNA ligands may provide tools for studying RNA interactions with matrix and nucleocapsid, and a novel method for inhibiting HIV replication.  相似文献   

10.
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus‐like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti‐myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high‐performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038–1045, 2016  相似文献   

11.
The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29-160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 A resolution reveals a protein core composed of a five-stranded antiparallel beta sheet with a positively charged beta hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation.  相似文献   

12.
A Hirano  M Ayata  A H Wang    T C Wong 《Journal of virology》1993,67(4):1848-1853
We have developed an in vitro nucleocapsid-binding assay for studying the function of the matrix (M) protein of measles virus (MV) (A. Hirano, A. H. Wang, A. F. Gombart, and T. C. Wong, Proc. Natl. Acad. Sci. USA, 89:8745-8749, 1992). In this communication we show that the M proteins of three MV strains that cause acute infection (Nagahata, Edmonston, and YN) bind efficiently to the viral nucleocapsids whereas the M proteins of four MV strains isolated from patients with subacute sclerosing panencephalitis (SSPE) (Biken, IP-3, Niigata, and Yamagata) fail to bind to the viral nucleocapsids. MV Biken (an SSPE-related virus) produces variant M sequences which encode two antigenically distinct forms of M protein. A serine-versus-leucine difference is responsible for the antigenic variation. MV IP-3 (an SSPE-related virus) also produces variant M sequences, some of which have been postulated to encode a functional M protein responsible for the production of an infectious revertant virus. However, the variant M proteins of Biken and IP-3 strains show no nucleocapsid-binding activity. These results demonstrate that the nucleocapsid-binding function is conserved in the M proteins of MV strains that cause acute infection and that the M proteins of MV strains that cause SSPE exhibit a common defect in this function. Analysis of chimeric M proteins indicates that mutations in the amino-terminal, carboxy-proximal, or carboxy-terminal region of the M protein all abrogate nucleocapsid binding, suggesting that the M protein conformation is important for interaction with the viral nucleocapsid.  相似文献   

13.
M蛋白是新城疫病毒(Newcastle disease virus,NDV)基因组编码的一种非糖基化膜相关蛋白,主要位于病毒囊膜内表面,构成病毒囊膜与核衣壳连接的支架。研究表明,M蛋白是一种细胞核-细胞质穿梭蛋白,在抑制细胞基因转录和蛋白质合成以及协助病毒粒子组装和出芽方面发挥了重要作用。目前,国内外对NDV毒力和复制的关系研究主要集中在病毒的F、HN和V蛋白以及RNP复合体,但是近年来研究人员利用反向遗传操作技术研究发现M蛋白与NDV毒力和复制也存在一定的联系。因此,本文主要对NDV M蛋白的结构特征、M蛋白对NDV毒力和复制的影响及其作用机制进行综述,以期为NDV M蛋白的功能研究提供新的理论参考。  相似文献   

14.
15.
16.
Analysis of native disulfide-bonded protein oligomers in paramyxoviruses showed that some viral proteins are consistently present as covalent complexes. In isolated Sendai virus the hemagglutinating protein HN is present in homodimeric and homotetrameric forms, and the minor nucleocapsid protein P exists partly as a monomer and partly as a disulfide-linked homotrimer. Similar disulfide-linked complexes were observed in Newcastle disease virus (strain HP-16), in which HN exists as a homodimer and some of the major nucleocapsid protein NP exists as a homotrimer. Noncovalent intermolecular interactions between proteins were studied with the reversible chemical cross-linkers dimethyl-3,3'-dithiobispropionimidate and methyl 3-[(p-azidophenyl)dithio]propionimidate, which contain disulfide bridges and a 1.1-nm separation between their functional groups. The same results were achieved with both reagents. The conditions of preparation, isolation, and storage of the viruses affected the protein-protein interactions observed upon cross-linking. Homooligomers of the glycoprotein F, the matrix protein M, and the major nucleocapsid protein NP were produced in both Sendai and Newcastle disease viruses after mild cross-linking of all viral preparations examined, but NP-M heterodimer formation in both viruses was most prevalent in early harvest preparations that were cross-linked soon after isolation. The ability of NP and M to form a heterodimer upon cross-linking indicates that the matrix protein layer lies in close proximity (within 1.1 nm) to the nucleocapsid in the newly formed virion. Some noncovalent intermolecular protein interactions in Sendai and Newcastle disease viruses, i.e., those leading to the formation of F, NP, and M homooliogmers upon cross-linking, are more stable to virus storage than others, i.e., those leading to the formation of an NP-M heterodimer upon cross-linking. The storage-induced loss of the ability of NP and M to form a heterodimer is not accompanied by any apparent loss of infectivity. This indicates that some spacial relationships which form during virus assembly can alter after particle formation and are not essential for the ensuing stages of the infectious process.  相似文献   

17.
Several temperature-sensitive mutants of vesicular stomatitis virus in complementation group III produce, at nonpermissive temperature, noninfectious particles which contain the viral M (matrix) and G (glycoprotein) proteins but less than 10% of the normal proportion of N protein or RNA. Since group III mutants are thought to be defective in the structural gene for the virus M protein, these findings demonstrate that an interaction between M and the nucleocapsid is of importance in virus budding. Taken together with earlier results, they suggest that M is the key protein in bud formation.  相似文献   

18.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

19.
In Sindbis virus, initiation of nucleocapsid core assembly begins with recognition of the encapsidation signal of the viral RNA genome by capsid protein. This nucleation event drives the recruitment of additional capsid proteins to fully encapsidate the genome, generating an icosahedral nucleocapsid core. The encapsidation signal of the Sindbis virus genomic RNA has previously been localized to a 132-nucleotide region of the genome within the coding region of the nsP1 protein, and the RNA-binding activity of the capsid was previously mapped to a central region of the capsid protein. It is unknown how capsid protein binding to encapsidation signal leads to ordered oligomerization of capsid protein and nucleocapsid core assembly. To address this question, we have developed a mobility shift assay to study this interaction. We have characterized a 32 amino acid peptide capable of recognizing the Sindbis virus encapsidation signal RNA. Using this peptide, we were able to observe a conformational change in the RNA induced by capsid protein binding. Binding is tight (K(d)(app) = 12 nM), and results in dimerization of the capsid peptide. Mutational analysis reveals that although almost every predicted secondary structure within the encapsidation signal is required for efficient protein binding, the identities of the bases within the helices and hairpin turns of the RNA do not need to be maintained. In contrast, two purine-rich loops are essential for binding. From these data, we have developed a model in which the encapsidation signal RNA adopts a highly folded structure and this folding process directs early events in nucleocapsid assembly.  相似文献   

20.
The expression of mumps virus nucleocapsid protein in yeast Pichia pastoris was investigated. Viral nucleocapsid proteins usually elicit a strong long-term humoral immune response in patients and experimental animals. Therefore, the detection of antibodies specific to mumps virus nucleoprotein can play an important role in immunoassays for mumps diagnosis. For producing a high-level of recombinant mumps virus nucleoprotein the expression system of yeast P. pastoris was employed. The recombinant nucleocapsid protein was purified by cesium chloride ultracentrifugation of yeast lysates. Electron microscopy of the purified recombinant nucleocapsid protein revealed a herring-bone structure similar to the one discovered in mammalian cells infected with mumps virus. The yield of purified nucleocapsid-like particles from P. pastoris constituted 2.1 mg per 1 g of wet biomass and was considerably higher in comparison to the other expression systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号