首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To cope with the accumulation of unfolded or misfolded proteins the endoplasmic reticulum (ER) has evolved specific signalling pathways collectively called the unfolded protein response (UPR). Elucidation of the mechanisms governing ER stress signalling has linked this response to the regulation of diverse physiologic processes as well as to the progression of a number of diseases. Interest in hereditary haemochromatosis (HH) has focused on the study of proteins implicated in iron homeostasis and on the identification of new alleles related with the disease. HFE has been amongst the preferred targets of interest, since the discovery that its C282Y mutation was associated with HH. However, the discrepancies between the disease penetrance and the frequency of this mutation have raised the possibility that its contribution to disease progression might go beyond the mere involvement in regulation of cellular iron uptake. Recent findings revealed that activation of the UPR is a feature of HH and that this stress response may be involved in the genesis of immunological anomalies associated with the disease. This review addresses the connection of the UPR with HH, including its role in MHC-I antigen presentation pathway and possible implications for new clinical approaches to HH.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a disorder that affects motor neurons in motor cortex and spinal cord, and the degeneration of both neuronal populations is a critical feature of the disease. Abnormalities in protein homeostasis (proteostasis) are well established in ALS. However, they have been investigated mostly in spinal cord but less so in motor cortex. Herein, we monitored the unfolded protein (UPR) and heat shock response (HSR), two major proteostasis regulatory pathways, in human post-mortem tissue derived from the motor cortex of sporadic ALS (SALS) and compared them to those occurring in spinal cord. Although the UPR was activated in both tissues, specific expression of select UPR target genes, such as PDIs, was observed in motor cortex of SALS cases strongly correlating with oligodendrocyte markers. Moreover, we found that endoplasmic reticulum-associated degradation (ERAD) and HSR genes, which were activated predominately in spinal cord, correlated with the expression of neuronal markers. Our results indicate that proteostasis is strongly and selectively activated in SALS motor cortex and spinal cord where subsets of these genes are associated with specific cell type. This study expands our understanding of convergent molecular mechanisms occurring in motor cortex and spinal cord and highlights cell type–specific contributions.  相似文献   

3.
Symptomatic dengue virus (DENV) infections range from mild fever to severe haemorrhagic disease and death. Host‐viral interactions play a significant role in deciding the fate of the infection. The unfolded protein response (UPR) is a prosurvival cellular reaction induced in response to DENV‐mediated endoplasmic reticulum stress. The UPR has complex interactions with the cellular autophagy machinery, apoptosis, and innate immunity. DENV has evolved to manipulate the UPR to facilitate its replication and to evade host immunity. Our knowledge of this intertwined network of events is continuously developing. A better understanding of the UPR mediated antiviral and proviral effects will shed light on dengue disease pathogenesis and may help development of anti‐DENV therapeutics. This review summarizes the role of the UPR in viral replication, autophagy, and DENV‐induced inflammation to describe how a host response contributes to DENV pathogenesis.  相似文献   

4.
Little is known about the molecular mechanisms underlying sleep. We show the induction of key regulatory proteins in a cellular protective pathway, the unfolded protein response (UPR), following 6 h of induced wakefulness. Using C57/B6 male mice maintained on a 12:12 light/dark cycle, we examined, in cerebral cortex, the effect of different durations of prolonged wakefulness (0, 3, 6, 9 and 12 h) from the beginning of the lights-on inactivity period, on the protein expression of BiP/GRP78, a chaperone and classical UPR marker. BiP/GRP78 expression is increased with increasing durations of sleep deprivation (6, 9 and 12 h). There is no change in BiP/GRP78 levels in handling control experiments carried out during the lights-off period. PERK, the transmembrane kinase responsible for attenuating protein synthesis, which is negatively regulated by binding to BiP/GRP78, is activated by dissociation from BiP/GRP78 and by autophosphorylation. There is phosphorylation of the elongation initiation factor 2alpha and alteration in ribosomal function. These changes are first observed after 6 h of induced wakefulness. Thus, prolonging wakefulness beyond a certain duration induces the UPR indicating a physiological limit to wakefulness.  相似文献   

5.
The unfolded protein response   总被引:5,自引:0,他引:5  
The unfolded protein response (UPR) is a signal transduction network activated by inhibition of protein folding in the endoplasmic reticulum (ER). The UPR coordinates adaptive responses to this stress situation, including induction of ER resident molecular chaperone and protein foldase expression to increase the protein folding capacity of the ER, induction of phospholipid synthesis, attenuation of general translation, and upregulation of ER-associated degradation to decrease the unfolded protein load of the ER, and an antioxidant response. Upon severe or prolonged ER stress the UPR induces apoptosis to eliminate unhealthy cells from an organism or a population. In this review, I will summarize our current knowledge about signal transduction pathways involved in transducing the unfolded protein signal from the ER to the nucleus or the cytosol.  相似文献   

6.
7.
8.
9.
Accumulation of unfolded proteins in the endoplasmic reticulum triggers the unfolded protein response (UPR) pathway, which increases the expression of chaperones to maintain the homeostasis. Calreticulin is a calcium-binding chaperone located in the lumen of endoplasmic reticulum (ER). Here we show that in response to a UPR inducing reagent, tunicamycin, the expression of calreticulin (crt-1) is specifically up-regulated in Caenorhabditis elegans. Tunicamycin (TM) induced expression of the crt-1 requires IRE-1 and XBP-1 but is ATF-6 and PEK-1 independent. Analysis of the crt-1 promoter reveals a putative XBP-1 binding site at the -284 to -278 bp region, which was shown to be necessary for TM-mediated induction. Genetic analysis of crt-1 mutants and mutants of UPR pathway genes show various degrees of developmental arrest upon TM treatment. Our results suggest that the TM-induced UPR pathway culminates in the up-regulation of crt-1, which protects the worm from deleterious accumulation of unfolded proteins in the ER. Knockdown of the crt-1, pdi-2, or pdi-3 increased the crt-1 expression, whereas knockdown of the hsp-3 or hsp-4 did not have any effect on crt-1 expression, indicating the existence of complex compensatory networks to cope up with ER stress.  相似文献   

10.
未折叠蛋白质应答   总被引:3,自引:0,他引:3  
内质网是真核细胞中蛋白质合成、折叠与分泌的重要细胞器.细胞进化出一套完整的机制来监督和帮助内质网内蛋白质的折叠与修饰.而当错误折叠的蛋白质累积时,细胞通过一系列信号转导途径,对其进行应答,包括增强蛋白质折叠能力、停滞大多数蛋白质的翻译、加速蛋白质的降解等.如果内质网功能素乱持续,细胞将最终启动凋亡程序.这些反应被统称为未折叠蛋白质应答(unfolded protein response,UPR).UPR是多个信号转导通路的总称,包括IRE1-XBP1、PERK-ATF4以及ATF6等信号途径.除了应激条件外,UPR还被用于正常生理条件下的调节,例如胆固醇合成代谢的负反馈调控.  相似文献   

11.
Murine regenerating (mReg) genes have been implicated in preserving islet cell biology. Expanding on our previous work showing that overexpression of mReg2 protects MIN6 insulinoma cells against streptozotocin-induced apoptosis, we now demonstrate that mReg2 induces glucose-regulated peptide 78 (GRP78) expression via the Akt–mTORC1 axis and protects MIN6 cells against ER stress induced by thapsigargin and glucolipotoxicity. Activation of mTORC1 activity results from both mReg2-induced increased mTOR phosphorylation as well as increased expression of Raptor and GβL. Inhibition of Akt and mTORC1 blunted the ability of mReg2 to induce GRP78 and attenuate unfolded protein response (UPR). Knockdown of GRP78 sensitized the cells overexpressing mReg2 to UPR without affecting its ability to activate Akt–mTORC1 signaling. Induced expression of mReg2 may protect insulin producing cells from ER stress in diabetes.  相似文献   

12.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

13.
14.
15.
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.  相似文献   

16.
17.
The unfolded protein response: no longer just a special teams player   总被引:2,自引:0,他引:2  
The endoplasmic reticulum stress pathway known as the unfolded protein response is currently the best understood model of interorganellar signal transduction. Bridging a physical separation, the pathway provides a direct line of communication between the endoplasmic reticulum lumen and the nucleus. With the unfolded protein response, the cell has the means to monitor and respond to the changing needs of the endoplasmic reticulum. Beginning with the discovery of its remarkable signaling mechanism in yeast, the unfolded protein response has not ceased to reveal more of its many secrets. By applying powerful biochemical, genetic, genomic, and cytological approaches, the recent efforts of many groups have buried the long-held notion that the unfolded protein response is simply a regulatory platform for endoplasmic reticulum chaperones. We now know that the unfolded protein response regulates many genes that affect diverse aspects of cellular physiology. In addition, studies in mammals have revealed novel unfolded protein response signaling factors that may contribute to the specialized needs of multicellular organisms. This article focuses on these and other recent developments in the field.  相似文献   

18.
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号