首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Niemann Pick-C1 (NPC-1) protein is essential for intracellular transport of cholesterol derived from low-density lipoprotein import in mammalian cells. The role of the protein kinase A (PKA) pathway in regulation of expression of the NPC-1 gene was investigated. NPC-1 promoter activity was induced by treatment with dibutryl cAMP (dbcAMP), alone or in combination with the cAMP response element (CRE) binding protein (CREB) overexpressed in adrenal Y-1 cells. When the catalytic subunit of PKA was overexpressed in Y-1 cells, there were similar increases in NPC-1 promoter activity in the presence of CREB. Responses were attenuated by blockade of the PKA pathway, and in the Kin-8 cell line deficient in PKA. Promoter deletion analysis revealed that this response was present in promoter fragments of 186 bp and larger but not present in the 121-bp fragment. Two promoter regions, one at -430 and one at -120 upstream of the translation initiation site, contained CRE consensus sequences. These bound recombinant CREB in EMSA, confirming their authenticity as CREB response elements. Promoters bearing mutations of both CRE displayed no response to dbcAMP. The orphan nuclear receptor, steroidogenic factor-1 (SF-1), was implicated in NPC-1 transactivation by the presence of SF-1 target sequence that formed a complex with recombinant SF-1 in EMSA. Furthermore, transfection of a plasmid that overexpressed SF-1 into ovarian granulosa cells increased promoter activity in response to dbcAMP, an effect abrogated by mutation of the SF-1 target sequence. Chromatin immunoprecipitation assays demonstrated that the CRE region of the endogenous and transfected NPC-1 promoter associated with both acetylated and phosphorylated histone H-3 and that this association was increased by dbcAMP treatment. Treatment with dbcAMP also increased the association of the CRE region of the promoter with CREB binding protein, which has histone acetyltransferase activity. Together, these results demonstrate a mechanism of regulation of NPC-1 expression by the cAMP-PKA pathway that includes PKA phosphorylation of CREB, recruitment of the coactivator CREB binding protein and the phosphorylation and acetylation of histone H-3 to transactivate the NPC-1 promoter.  相似文献   

2.
3.
4.
Vascular smooth muscle cell (VSMC) migration is implicated in atherosclerosis and restenosis. Nuclear receptor subfamily 6, group A, member 1 (NR6A1) is involved in regulating embryonic stem cell differentiation, reproduction, neuronal differentiation. Functional cooperation between cAMP response element modulator tau (CREMtau) and NR6A1 can direct gene expression in cells. cAMP response element binding protein (CREB) plays a key role in VSMC migration. In this study, we sought to determine whether CREB involved in NR6A1-modulated VSMC migration. VSMCs treated with platelet-derived growth factor-BB (PDGF-BB) displayed reduced mRNA and protein levels of NR6A1. Adenovirus-mediated expression of NR6A1 (Ad-NR6A1) could inhibit PDGF-BB- and serum-induced VSMC migration. The mRNA and protein expressions of secreted phosphoprotein 1 (SPP1) were down-regulated by NR6A1 overexpression. SPP1 promoter reporter activity was repressed by NR6A1. NR6A1 was found to physically couple with nuclear actin and the large subunit of RNA polymerase II. Furthermore, we showed that CREB interacted with NR6A1 in VSMCs. NR6A1 overexpression repressed cAMP response element (CRE) activity. ChIP assay revealed that NR6A1 bind to SPP1 promoter. Luciferase reporter assay showed that NR6A1 regulated SPP1 promoter activity via a putative CRE site. Adenovirus mediated local NR6A1 gene transfer attenuated stenosis after balloon-induced arterial injury in Sprague–Dawley rats. Taken together, this study provided experimental evidence that NR6A1 modulated SPP1 expression via its binding with CREB protein in VSMCs. We also revealed a NR6A1-CREB-SPP1 axis that serves as a regulatory mechanism for atherosclerosis and restenosis.  相似文献   

5.
6.
7.
8.
9.
Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signaling and, thereby, the expression of cyclin D1. Our results lead to a model of cyclin A gene regulation in which mitogens play a permissive role by stimulating early G(1)-phase phosphorylation of CREB and a distinct regulatory role by cooperating with the organized actin cytoskeleton to regulate the duration of ERK signaling, the expression of cyclin D1, and the timing of pocket protein phosphorylation.  相似文献   

10.
11.
12.
13.
Engagement of surface immunoglobulin on mature B cells leads to rescue from apoptosis and to proliferation. Levels of bcl-2 mRNA and protein increase with cross-linking of surface immunoglobulin. We have located the major positive regulatory region for control of bcl-2 expression in B cells in the 5'-flanking region. The positive region can be divided into an upstream and a downstream regulatory region. The downstream regulatory region contains a cyclic AMP-responsive element (CRE). We show by antibody supershift experiments and UV cross-linking followed by denaturing polyacrylamide gel electrophoresis that both CREB and ATF family members bind to this region in vitro. Mutations of the CRE site that result in loss of CREB binding also lead to loss of functional activity of the bcl-2 promoter in transient-transfection assays. The presence of an active CRE site in the bcl-2 promoter implies that the regulation of bcl-2 expression is linked to a signal transduction pathway in B cells. Treatment of the mature B-cell line BAL-17 with either anti-immunoglobulin M or phorbol 12-myristate 13-acetate leads to an increase in bcl-2 expression that is mediated by the CRE site. Treatment of the more immature B-cell line, Ramos, with phorbol esters rescues the cells from calcium-dependent apoptosis. bcl-2 expression is increased following phorbol ester treatment, and the increased expression is dependent on the CRE site. These stimuli result in phosphorylation of CREB at serine 133. The phosphorylation of CREB that results in activation is mediated by protein kinase C rather than by protein kinase A. Although the CRE site is necessary, optimal induction of bcl-2 expression requires participation of the upstream regulatory element, suggesting that phosphorylation of CREB alters its interaction with the upstream regulatory element. The CRE site in the bcl-2 promoter appears to play a major role in the induction of bcl-2 expression during the activation of mature B cells and during the rescue of immature B cells from apoptosis. It is possible that the CRE site is responsible for induction of bcl-2 expression in other cell types, particularly those in which protein kinase C is involved.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号