首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pot1 (protection of telomeres 1) is a single-stranded telomere binding protein that is essential for chromosome end protection and telomere length homeostasis. Arabidopsis encodes two Pot1-like proteins, dubbed AtPot1 and AtPot2. Here we show that telomeres in transgenic plants expressing a truncated AtPot1 allele lacking the N-terminal oligonucleotide/oligosaccharide binding fold (P1DeltaN) are 1 to 1.5 kb shorter than in the wild type, suggesting that AtPot1 contributes to the positive regulation of telomere length control. In contrast, telomere length is unperturbed in plants expressing the analogous region of AtPot2. A strikingly different phenotype is observed in plants overexpressing the AtPot2 N terminus (P2DeltaC) but not the corresponding region in AtPot1. Although bulk telomeres in P2DeltaC mutants are 1 to 2 kb shorter than in the wild type, these plants resemble late-generation telomerase-deficient mutants with severe growth defects, sterility, and massive genome instability, including bridged chromosomes and aneuploidy. The genome instability associated with P2DeltaC mutants implies that AtPot2 contributes to chromosome end protection. Thus, Arabidopsis has evolved two Pot genes that function differently in telomere biology. These findings provide unanticipated information about the evolution of single-stranded telomere binding proteins.  相似文献   

2.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

3.
Abstract: In plants, the developmental dynamics of telomere length have only been studied in a few species to date. Contrasting results have been reported. To search for the pattern(s) operating in plants, a study of the telomere length was made in pearl millet. Telomere length in cells representing different developmental stages: a) embryo, b) leaves of 1-week-old seedlings, 1-month-old plants and boot leaf and c) germ cells (pollen) were compared. The presence of the consensus plant telomere repeat sequence (5'-TTTAGGG-3') in pearl millet telomeres was first ascertained; the sensitivity of the sequences hybridizing with (TTTAGGG)4 oligonucleotide to time course Bal 31 exonuclease digestions were studied on dot blots and gel blots. The exonuclease digestion kinetics revealed the presence of the consensus telomere repeat sequence in pearl millet telomeres. The average telomere length (ATL) was measured from autoradiograms of Hae III digested DNA, hybridized with labelled (5'-TTTAGGG-3')4 oligonucleotide using "UVI band" software. No significant difference in the average telomere length was observed between the embryo, leaves of 1-week-old seedlings, boot leaf and pollen. The ATL in leaves of 1-month-old plants was slightly higher. The results of the present investigation and analysis of the reports in the other plants suggest that there is an occasional increase in telomere length in some telomeres but no significant decrease due to loss during DNA replication.  相似文献   

4.
5.
Shortened telomeres are a normal consequence of cell division. However, telomere shortening past a critical point results in cellular senescence and death. To determine the effect of telomere shortening on lung, four generations of B6.Cg-Terc(tm1Rdp) mice, null for the terc component of telomerase, the holoenzyme that maintains telomeres, were bred and analyzed. Generational inbreeding of terc-/- mice caused sequential shortening of telomeres. Lung histology from the generation with the shortest telomeres (terc-/- F4) showed alveolar wall thinning and increased alveolar size. Morphometric analysis confirmed a significant increase in mean linear intercept (MLI). terc-/- F4 lung showed normal elastin deposition but had significantly decreased collagen content. Both airway and alveolar epithelial type 1 cells (AEC1) appeared normal by immunohistochemistry, and the percentage of alveolar epithelial type 2 cells (AEC2) per total cell number was similar to wild type. However, because of a decrease in distal lung cellularity, the absolute number of AEC2 in terc-/- F4 lung was significantly reduced. In contrast to wild type, terc-/- F4 distal lung epithelium from normoxia-maintained mice exhibited DNA damage by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end labeling (TUNEL) and 8-oxoguanine immunohistochemistry. Western blotting of freshly isolated AEC2 lysates for stress signaling kinases confirmed that the stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) stress response pathway is stimulated in telomerase-null AEC2 even under normoxic conditions. Expression of downstream apoptotic/stress markers, including caspase-3, caspase-6, Bax, and HSP-25, was also observed in telomerase-null, but not wild-type, AEC2. TUNEL analysis of freshly isolated normoxic AEC2 showed that DNA strand breaks, essentially absent in wild-type cells, increased with each successive terc-/- generation and correlated strongly with telomere length (R(2) = 0.9631). Thus lung alveolar integrity, particularly in the distal epithelial compartment, depends on proper telomere maintenance.  相似文献   

6.
We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1+ gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1+ gene; the rate was ~1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1+ gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.  相似文献   

7.
8.
Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. Although CDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4 mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1Delta double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y' elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13p functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.  相似文献   

9.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.  相似文献   

10.
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.  相似文献   

11.
End-to-end fusion of critically shortened telomeres in higher eucaryotes is presumed to be mediated by nonhomologous end-joining (NHEJ). Here we describe two PCR-based methods to monitor telomere length and examine the fate of dysfunctional telomeres in Arabidopsis lacking the catalytic subunit of telomerase (TERT) and the DNA repair proteins Ku70 and Mre11. Primer extension telomere repeat amplification relies on the presence of an intact G-overhang, and thus measures functional telomere length. The minimum functional telomere length detected was 300-400 bp. PCR amplification and sequence analysis of chromosome fusion junctions revealed exonucleolytic digestion of dysfunctional ends prior to fusion. In ku70 tert mutants, there was a greater incidence of microhomology at the fusion junction than in tert mutants. In triple ku70 tert mre11 mutants, chromosome fusions were still detected, but microhomology at the junction was no longer favored. These data indicate that both Ku70 and Mre11 contribute to fusion of critically shortened telomeres in higher eucaryotes. Furthermore, Arabidopsis processes critically shortened telomeres as double-strand breaks, using a variety of end-joining pathways.  相似文献   

12.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   

13.
Rap1 affects the length and heterogeneity of human telomeres   总被引:8,自引:0,他引:8       下载免费PDF全文
Telomere length is controlled in part by cis-acting negative regulators that limit telomere extension by telomerase. In budding yeast, the major telomere length regulator scRap1 binds to telomeric DNA and acts to inhibit telomere elongation in cis. Because the human Rap1 ortholog hRap1 does not bind to telomeric DNA directly but is recruited to telomeres by TRF2, we examined its role in telomere length control. The data are consistent with hRap1 being a negative regulator of telomere length, indicating functional conservation. Deletion mapping confirmed that hRap1 is tethered to telomeres through interaction of its C terminus with TRF2. The telomere length phenotypes of hRap1 deletion mutants implicated both the BRCT and Myb domain as protein interaction domains involved in telomere length regulation. By contrast, scRap1 binds to telomeres with its Myb domains and uses its C terminus to recruit the telomere length regulators Rif1 and Rif2. Together, our data show that although the role of Rap1 at telomeres has been largely conserved, the domains of Rap1 have undergone extensive functional changes during eukaryotic evolution. Surprisingly, hRap1 alleles lacking the BRCT domain diminished the heterogeneity of human telomeres, indicating that hRap1 also plays a role in the regulation of telomere length distribution.  相似文献   

14.
The fission yeast Pot1 (protection of telomeres) protein binds to the single-stranded extensions at the ends of telomeres, where its presence is critical for the maintenance of linear chromosomes. Homologs of Pot1 have been identified in a wide variety of eukaryotes, including plants, animals, and humans. We now show that Pot1 plays dual roles in telomere length regulation and chromosome end protection. Using a series of Pot1 truncation mutants, we have defined distinct areas of the protein required for chromosome stability and for limiting access to telomere ends by telomerase. We provide evidence that a large portion of Pot1, including the N-terminal DNA binding domain and amino acids close to the C terminus, is essential for its protective function. C-terminal Pot1 fragments were found to exert a dominant-negative effect by displacing endogenous Pot1 from telomeres. Reducing telomere-bound Pot1 in this manner resulted in dramatic lengthening of the telomere tract. Upon further reduction of Pot1 at telomeres, the opposite phenotype was observed: loss of telomeric DNA and chromosome end fusions. Our results demonstrate that cells must carefully regulate the amount of telomere-bound Pot1 to differentiate between allowing access to telomerase and catastrophic loss of telomeres.  相似文献   

15.
Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis.  相似文献   

16.
POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme.  相似文献   

17.
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.  相似文献   

18.
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X. Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telomere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.  相似文献   

19.
Jin Y  Uzawa S  Cande WZ 《Genetics》2002,160(3):861-876
In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterization of six mutants from our screen for meiotic mutants. These mutants show defective telomere clustering as demonstrated by mislocalization of Swi6::GFP, a heterochromatin-binding protein, and Taz1p::GFP, a telomere-specific protein. These mutants define four complementation groups and are named dot1 to dot4-defective organization of telomeres. dot3 and dot4 are allelic to mat1-Mm and mei4, respectively. Immunolocalization of Sad1, a protein associated with the spindle pole body (SPB), in dot mutants showed an elevated frequency of multiple Sad1-nuclei signals relative to wild type. Many of these Sad1 foci were colocalized with Taz1::GFP. Impaired SPB structure and function were further demonstrated by failure of spore wall formation in dot1, by multiple Pcp1::GFP signals (an SPB component) in dot2, and by abnormal microtubule organizations during meiosis in dot mutants. The coincidence of impaired SPB functions with defective telomere clustering suggests a link between the SPB and the telomere cluster.  相似文献   

20.
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3′-GT-overhangs that extend beyond the complementary 5′-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5′-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5′-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号