首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自在中枢神经系统中发现谷氨酸发挥功能以来,谷氨酸受体及其在突触内膜偶联的信号通路,就成为神经系统研究的重要内容。近年的研究显示,谷氨酸受体及其胞内信号通路在包括骨在内的非神经组织中表达和发挥功能,在骨细胞中有表达谷氨酸受体、转运子的证据,因而有假说认为谷氨酸成了骨中力学信号潜在的转导子,但还缺乏有利的证据支持。简要综述了谷氨酸信号通路及其在骨中的功能,并就其在骨力学信号转导中潜在的功能和作用机制进行了探讨。  相似文献   

2.
Vascular endothelial growth factor (VEGF) is an endothelial cell survival factor and is required for effective coupling of angiogenesis and osteogenesis. Although central to bone homeostasis, repair and the pathobiology that affect these processes, the precise mechanisms coupling endothelial cell function within bone formation and remodelling remain unclarified. This review will (i) focus on the potential directionality of VEGF signalling in adult bone by identifying the predominant source of VEGF within the bone microenvironment, (ii) will summarize current VEGF receptor expression studies by bone cells and (iii) will provide evidence for a role for VEGF signalling during postnatal repair and osteoporosis. A means of understanding the directionality of VEGF signalling in adult bone would allow us to most effectively target angiogenic pathways in diseases characterized by changes in bone remodelling rates and enhance bone repair when compromised. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Communication between the cells in bone underlies the way that the tissue functions physiologically, and in nearly all pathologies, the pathogenesis of skeletal diseases. The number of molecules involved in intercellular signalling in bone grows constantly and it is perhaps unsurprising that the list includes many with functions in other tissues. In recent years, evidence has accumulated to show that molecules involved in neurotransmission have paracrine roles in the skeleton. The focus of this review is the excitatory amino acid glutamate and its role in regulating bone formation and resorption. Specifically, this article will concentrate on the functional role of the system, and the reasons why mechanisms like synaptic transmission are relevant to what might appear to be a slow responding tissue, as the sites of expression of glutamate signalling components in bone have been reviewed already. While there is strong evidence for a regulatory role for glutamate in osteoblast and osteoclast differentiation and function in vitro, in vivo data is less advanced. Preliminary data from in vivo systems does however suggest that glutamate has a physiological function in the skeleton.  相似文献   

4.
Identification of intercellular signalling pathways in bone represents an important therapeutic target for drug development in the treatment of clinical conditions such as osteoporosis. One such intercellular signalling pathway in bone appears to be mediated by the excitatory amino acid glutamate, exhibiting remarkable similarities to synaptic neurotransmission. Bone cells (osteoblasts and osteoclasts) express functional glutamate receptors that are electrophysiologically and pharmacologically similar to those expressed in the CNS and there is evidence for their involvement in both bone formation and bone resorption. However, to date the cellular source of glutamate for the activation of these specific glutamatergic receptors in bone has remained unclear. This review provides a synopsis of our current understanding of these 'pre-synaptic' signalling mechanisms, presenting compelling evidence that osteoblasts possess the molecular capability to direct regulated vesicular glutamate release in response to osteotropic regulatory inputs. In addition, we discuss mechanisms other than 'pre-synaptic' glutamatergic mechanisms that could account for the source of glutamate for receptor activation in osteoblasts. Finally, convincing evidence reporting physiologically released glutamate in varied osteoblasts and osteoblastic cell lines is discussed. The overwhelming conclusion of this review is that by defining both the characteristics and regulatory control of this process, highlighting both similarities and differences between the CNS and bone may provide compelling evidence for the role of glutamate in bone cell function and physiology.  相似文献   

5.
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.  相似文献   

6.
Wnt signalling has an essential role in regulating bone formation and remodelling during embryonic development and throughout postnatal and adult life. Specifically, Wnt signalling regulates bone formation by controlling embryonic cartilage development and postnatal chondrogenesis, osteoblastogenesis, osteoclastogenesis, endochondral bone formation, and bone remodelling. Abnormalities in the function of Wnt genes give rise to or contribute to the development of several pathological bone conditions, including abnormal bone mass, osteosarcomas and bone loss in multiple myeloma. Furthermore, Wnt signalling is activated during bone fracture repair and plays a crucial role in regulating bone regeneration.  相似文献   

7.
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2‐adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A‐AR in bone. The aim of this study was to investigate the presence of α2A‐AR and its involvement in neuro‐endocrine signalling of bone remodelling in humans. Real‐time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A‐AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A‐AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real‐time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A‐AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A‐AR mRNA level in human bone samples through the stability of mRNA. α2A‐AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A‐AR is involved in neuro‐endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A‐AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis.  相似文献   

8.
Cellular therapy in cardiology   总被引:1,自引:0,他引:1  
Cardiac cell therapy has been initially designed to regenerate the infarcted myocardium through its repopulation by new cells able to restore function of scar areas. Six years after the first human application of this novel approach, it is timely appropriate to review the results of the first randomised trials in the three major indications, i.e., acute myocardial infarction, heart failure, and refractory angina. It should be recognized that the results are mixed, with benefits ranging from absent to transient and, at most, marginal. However, lessons drawn from this first wave of clinical series and the experimental data that have been concomitantly collected are multiple and highly informative. They indicate that adult stem cells, whether muscular or bone marrow-derived, fail to generate new cardiomyocytes. They suggest that the potential benefits of cardiac cell therapy are thus mediated by alternate mechanisms such as limitation of left ventricular remodelling or paracrine activation of signalling pathways involved in angiogenesis. They highlight the fact that the therapeutic benefits of grafted cells will not be fully exploited until issues of cell transfer and postengraftment survival have not been adequately addressed. These observations thus allow us to better fine-tune upcoming research, which should specifically concentrate on the development of cells featuring a true regeneration potential. In this setting, the greatest promises are currently held by embryonic stem cells.  相似文献   

9.
10.
The amino acid L-glutamate mediates signals at excitatory synapses in the CNS where its effects are controlled by co-ordinated activities of various types of glutamate receptor and transporter. This signalling mechanism has proved to be far more ubiquitous with many different cell types responding to glutamate. The glutamate transporter GLAST-1 was the first component of this pathway identified in bone where its expression was found to be mechanoresponsive in osteocytes. There is now a wealth of evidence supporting a role for this signalling mechanism in bone. Osteoblasts can release glutamate in a regulated manner and express functional glutamate receptors that influence their differentiation and osteogenic activity. Likewise, osteoclasts express functional glutamate receptors that influence their bone resorbing capacity. This article considers the various functions of glutamate transporters in this signalling pathway, and the evidence supporting an important role of glutamate signalling in regulating bone cell activities.  相似文献   

11.
12.
Osteoclast-derived activity in the coupling of bone formation to resorption   总被引:12,自引:0,他引:12  
The cells of bone and the immune system communicate by means of soluble and membrane-bound cytokines and growth factors. Through local signalling mechanisms, cells of the osteoblast lineage control the formation and activity of osteoclasts and, therefore, the resorption of bone. Both T and B lymphocytes produce activators and inhibitors of osteoclast formation. A local 'coupling factor' linking bone resorption to subsequent formation in the bone multicellular unit (BMU) has long been proposed as the key regulator of the bone remodelling process, but never identified. There is evidence in support of the view that the coupling mechanism is dependent on growth factors released from the bone matrix during resorption, or is generated from maturing osteoblasts. We argue that osteoclasts contribute in important ways to the transiently activated osteoclast, and stimulate osteoblast lineage cells to begin replacing the resorbed bone in each BMU.  相似文献   

13.
The glycocalyx covers the human mammalian cells and plays important roles in stroke, inflammation and atherosclerosis. It has also been shown to be involved in endothelial mechanotransduction of shear stress. Shear stress induces the remodelling of the major component of the glycocalyx including glypican‐1, a cell membrane heparan sulphate proteoglycan. Other factors, such as sphingosine‐1‐phosphate (S1P), protect the glycocalyx against syndecan‐1 ectodomain shedding and induce the synthesis of heparan sulphate. In this study, we reviewed the role of shear stress and S1P in glycocalyx remodelling and revealed that the glycocalyx is a critical signalling platform, integrating the extracellular haemodynamic forces and chemical signalling, such as S1P, for determining the fate of endothelial cells and vascular diseases. This review integrated our current understanding of the structure and function of the glycocalyx and provided new insight into the role of the glycocalyx that might be helpful for investigating the underlying biological mechanisms in certain human diseases, such as atherosclerosis.  相似文献   

14.
It has been suggested that skeletal nerves fibers may play important roles in neuro-osteogenic interactions. This view is partly based upon information obtained from immunohistochemical studies, chemical and surgical denervation experiments and clinical observations in patients with stroke and spinal cord injury, indicating the presence of a network of nerve fibers in the skeleton and that defective signalling in skeletal nerve fibers affects remodelling of bone. This view is also supported by data showing that functional receptors for signalling molecules in skeletal nerve fibers are expressed in bone cells and that activation of these receptors leads to profound effects on bone forming osteoblasts and bone resorbing osteoclasts. Convincing evidence for a role of neuronal signalling in bone metabolism has been provided by gene deletion approaches in which it has been shown that leptin-sensitive and neuropeptide Y-sensitive receptors in hypothalamus are important for bone remodelling in mice. Recently, gene deletion experiments have shown that calcitonin gene-related peptide (CGRP), one of the neuropeptides present in skeletal nerve fibers, is an important physiological regulator of bone formation at the level of osteoblast activity. CGRP belongs to the calcitonin (CT) family of peptides also including CT, amylin and adrenomedullin, as well as the recently described intermedin and calcitonin receptor-stimulating peptide. These peptides utilize two seven transmembrane G protein-coupled receptors - the calcitonin receptor (CTR) and the calcitonin receptor- like receptor (CRLR) - which can dimerize with three different single transmembrane proteins, making up the RAMP family. Associations between RAMPs and either CTR or CRLR give rise to seven distinct, molecularly characterized, receptors for CT, CGRP, amylin and adrenomedullin. Deletions of the genes for ligands in the CT family of peptides and for one of the receptors have revealed unexpected findings that have changed our view on the role of these peptides in bone remodelling. It was anticipated that deletions of the CT/alpha-CGRP and CTR genes would lead to bone loss, since CT has been shown to inhibit bone resorption in vitro and in vivo and has been used to treat patients with excessive bone resorption. Surprisingly, it was found that CT/alpha-CGRP-/- and CTR+/- mice have increased bone mass due to increased bone formation. Mice with deletion of the amylin gene, however, exhibited bone loss due to enhanced bone resorption. Selective deletion of the alpha-CGRP gene also leads to bone loss, but due to decreased bone formation. Thus, our understanding of the role of the CT family of peptides has been changed dramatically and much more data have to be gained before we fully understand the roles these peptides have in bone biology.  相似文献   

15.
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis.  相似文献   

16.
AMPA-type glutamate receptors mediate the majority of fast excitatory transmission in the central nervous system. The trafficking of AMPA receptors to and from synapses alters synaptic strength and has been recognized as a central mechanism underlying various forms of synaptic plasticity. Both secretory and endocytic trafficking events seem to be driven by the subunit composition of AMPA receptor tetramers. Moreover, recent work suggests that synapses employ different tetramer combinations in response to altered synaptic input, suggesting the existence of signalling pathways that mediate remodelling of AMPA receptors. These latest developments and recent progress in elucidating the mechanisms that underlie channel assembly and trafficking are the subject of this review.  相似文献   

17.
The interactions between the omega-3 unsaturated fatty acids and peroxisomal function have been reviewed, in order to update and integrate knowledge in this area. Following a brief retrospective of the major clinical involvements of these fatty acids, the participation of the peroxisome in their metabolism has been appraised - the peroxisome being shown to exert a major influence on both the synthesis and degradation of the omega-3 fatty acids, with these effects flowing on to the widespread physiological implications of the derivative eicosanoids. Interactions between the omega-3 and omega-6 families of fatty acids have been discussed, as have the interdependent phenomena of peroxisome proliferation, membrane remodelling and cellular signalling. Amongst the signalling involvements covered were those of steroid hormone receptor superfamily, the phosphatidy1choline cycle, and the regulatory influences of oxygen free radicals. Comment has also been included on the separate biological roles of the individual omega-3 fatty acids, their influence on differential gene function, and on the molecular mechanisms of their pharmacological effects. It is concluded that the peroxisome is intimately involved in directing the metabolism and physiological influence of the omega-3 unsaturated fatty acids, and that this organelle merits much greater emphasis in future research aimed at unravelling the profound biological effects of these unique and multipotent compounds.  相似文献   

18.
Bone remodelling is a dynamic process that requires the coordinated interaction of osteocytes, osteoblasts, and osteoclasts, collaborating in basic multicellular units (BMUs). Communication between these cells can be by extracellular soluble molecules as well as directly propagating intercellular signalling molecules. Key to the understanding of bone remodelling is osteocyte mechanosensing and chemical signalling to the surrounding cells, since osteocytes are believed to be the mechanosensors of bone, responding to mechanical stresses. Nitric oxide (NO) is an important parameter to study osteocyte activation following mechanical loading. It is a small short-lived molecule, which makes its real-time, quantitative monitoring difficult. However, recently we demonstrated that DAR-4M AM chromophore can be used for real-time quantitative monitoring of intracellular NO production in individual cells following mechanical loading. Here we studied if a single mechanically stimulated osteocyte communicates with, and thus activates its surrounding cells via extracellular soluble factors. We monitored quantitatively intracellular NO production in the stimulated osteocyte and in its surrounding osteocytes, which were not interconnected. Mechanical stimulation by microneedle of a single-MLO-Y4 osteocyte-like cell upregulated the average intracellular NO production by 94% in the stimulated cell, and by 31-150% in the surrounding osteocytes. In conclusion, a single osteocyte can disseminate a mechanical stimulus to its surrounding osteocytes via extracellular soluble signalling factors. This reinforces the putative mechanosensory role of osteocytes, and demonstrates a possible mechanism by which a single mechanically stimulated osteocyte can communicate with other cells in a BMU, which might help to better understand the intricacies of intercellular interactions in BMUs and thus bone remodelling.  相似文献   

19.
20.
There has been increasing evidence during the last years that glutamate (Glu), the major neuromediator of the nervous system, contributes to the local regulation of bone cell functions. Several classes of Glu receptors and transporters, as well as molecules involved in glutamate signal transduction in neuronal tissue, were identified in bone. While recent findings suggest that Glu may participate in mechanisms underlying bone formation, several studies indicate that Glu may also control bone resorption. Ionotropic NMDA and metabotropic Glu receptors are expressed by osteoclasts and electrophysiological studies have demonstrated that NMDA receptors (NMDAR) are functional on these cells. In vitro studies have shown that NMDAR are important for osteoclast function since several specific antagonists of NMDAR which block the current induced by Glu in these cells also inhibit bone resorption. Preliminary studies investigating the mechanisms of action of NMDAR antagonists on bone resorption are reviewed in this paper. There is also growing evidence that NMDAR are expressed throughout the osteoclastic differentiation sequence and that antagonists of NMDAR affect osteoclastogenesis. Very few in vivo studies have however investigated the role of Glu in skeletal metabolism and bone resorption and clearly further work is required to demonstrate the relevance of glutamate signaling in the physiology of bone resorption in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号