首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Enzymatic conjugation of epoxides with glutathione   总被引:15,自引:0,他引:15  
  相似文献   

5.
A microsomal glutathione S-transferase (GST) was purified from human liver. This enzyme was shown to have characteristics similar to those of the rat microsomal GST described by Morgenstern & De Pierre [(1983) Eur. J. Biochem. 134, 591-597]. The specific activity of human microsomal GST towards 1-chloro-2,4-dinitrobenzene or cumene hydroperoxide can be stimulated by treating the enzyme with N-ethylmaleimide. This enhancement of activity is accompanied by increased sensitivity to inhibition by haematin and cholic acid. The subunit Mr values of the rat and human enzymes are similar (approx. 17,300), and the proteins are immunologically related. During purification, both human and rat microsomal GST enzymes are the only hepatic proteins obtained from Triton X-100-solubilized microsomal fractions that show activity towards the nephrotoxin hexachlorobuta-1,3-diene. The involvement of microsomal GST in toxification reactions is discussed.  相似文献   

6.
The enzymic oxidation of glutathione in rat liver homogenates   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The aerobic oxidation of GSH and other thiols by rat liver homogenate is abolished either by previous dialysis or by removal of the proteins but is restored by a mixture of the protein-free filtrate and the dialysed homogenate. 2. The oxidation is prevented by previously heating the dialysed homogenate but not the protein-free filtrate and also by known inhibitors of xanthine oxidase. 3. A similar oxidation occurs with hypoxanthine in place of of protein-free filtrate.  相似文献   

7.
8.
A number of plant species are thought to possess a glutathione S-transferase enzyme (GST: EC 2.5.1.18) that will conjugate glutathione (GSH) to trans -cinnamic acid (CA) and para -coumaric acid (4-CA). However, we present evidence that this activity is mediated by peroxidase enzymes and not GSTs. The N-terminal amino acid sequence of the GSH-conjugating enzyme purified from etiolated corn shoots exhibited a strong degree of homology to cytosolic ascorbate peroxidase enzymes (APX: EC 1.11.1.11) from a number of plant species. The GSH-conjugating and APX activities of corn could not be separated during chromatography on hydrophobic-interaction. anion-exchange, and gel filtration columns. Spectral analysis of the enzyme revealed that the protein had a Soret band at 405 nm. When the enzyme was reduced with dithionite, the peak was shifted to 423 nm with an additional peak at 554 nm. The spectrum of the dithionite-reduced enzyme in the presence of 0.1 m M KCN exhibited peaks at 430, 534 and 563 nm. These spectra are consistent with the presence of a heme moiety. The GSH-conjugating and APX activities of the enzyme were both inhibited by KCN. NaN3, p -chloromercuribenzoate ( p CMB), and iodoacetate. The APX specific activity of the enzyme was 1.5-fold greater than the GSH-conjugating specific activity with 4-CA. In addition to the corn enzyme, a pea recombinant APX (rAPX) and horseradish peroxidase (HRP; EC 1.11.1.7) were also able to conjugate GSH to CA and 4-CA. The peroxidase enzymes may generate thiyl free radicals of GSH that react with the alkyl double bond of CA and 4-CA resulting in the formation of a GSH conjugate.  相似文献   

9.
An enzyme catalysing the conjugation of epoxides with glutathione   总被引:5,自引:3,他引:2       下载免费PDF全文
1. Liver supernatant preparations from rats and ferrets catalyse the conjugation of some epoxides with glutathione. The enzyme involved might be called `glutathione S-epoxidetransferase', as it is different from glutathione S-aryltransferase, the enzyme catalysing the conjugation of 1,2-dichloro-4-nitrobenzene, 4-nitro-pyridine N-oxide and other cyclic compounds with glutathione and from the enzyme catalysing the conjugation of iodomethane and glutathione. 2. The enzyme does not catalyse the reaction with cysteine. It is not inactivated by dialysis but is unstable at pH 5·0. 3. The role of the enzyme in metabolism of foreign compounds is discussed.  相似文献   

10.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

11.
Overexpression in Escherichia coli of a tau (U) class glutathione transferase (GST) from maize (Zea mays L.), termed ZmGSTU1, caused a reduction in heme levels and an accumulation of porphyrin precursors. This disruption was highly specific, with the expression of the closely related ZmGSTU2 or other maize GSTs having little effect. Expression in E. coli of a series of chimeric ZmGSTU1/ZmGSTU2 proteins identified domains responsible for disrupting porphyrin metabolism. In addition to known heme precursors, expression of ZmGSTU1 led to the accumulation of a novel glutathione conjugate of harderoporphyrin(ogen) (2,7,12,18-tetramethyl-3-vinylporphyrin-8,13,17-tripropionic acid). Using the related protoporphyrinogen as a substrate, conjugation could be shown to occur on one vinyl group and was actively catalyzed by the ZmGSTU. In plant transgenesis studies, the ZmGSTUs did not perturb porphyrin metabolism when expressed in the cytosol of Arabidopsis or tobacco. However, expression of a ZmGSTU1-ZmGSTU2 chimera in the chloroplasts of tobacco resulted in the accumulation of the harderoporphyrin(ogen)-glutathione conjugate observed in the expression studies in bacteria. Our results show that the well known ability of GSTs to act as ligand binding (ligandin) proteins of porphyrins in vitro results in highly specific interactions with porphyrinogen intermediates, which can be demonstrated in both plants and bacteria in vivo.  相似文献   

12.
13.
A reduction of cellular glutathione (GSH) content was observed when isolated rat hepatocytes were incubated with a stereoisomer of a uricosuric diuretic (S-8666) at a high concentration. Subsequent studies have revealed it was due to conjugation of GSH and S-8666 (-)-enantiomer in the liver cytosol. The (+)-enantiomer strongly inhibited the conjugation reaction, therefore, GSH depletion did not take place when a racemic form of S-8666 was incubated with the liver cells. A possible chemical structure of the GSH-conjugate is tentatively proposed.  相似文献   

14.
15.
The partial purification and properties of an enzyme from the soluble fraction of rat liver that catalyses the reaction of glutathione with 2,3-unsaturated acyl thiol esters is described, and its possible role in the formation of S-carboxyalkylcysteines is discussed. The synthesis of S-(3-methylcrotonyl)- and S-(2-methylcrotonyl)-N-acetylcysteamine and of S-crotonyl-NN-dimethylcysteamine hydrochloride and dicyclohexylammonium S-crotonyl-N-acetyl-l-cysteine is described.  相似文献   

16.
17.
In acetate buffer, pH 4, at room temperature, nitrite ions can mediate an unusual decarboxylative conjugation of caffeic acid with glutathione leading to novel isomeric 2-(3,4-dihydroxyphenyl)-2-S-glutathionylacetaldehyde oximes. These results hint at a possible role of endogenous and/or dietary glutathione in the mechanisms by which caffeic acid can affect the burden of carcinogenic N-nitroso compounds in the digestive tract.  相似文献   

18.
Enantiomers of 1,2-epoxy-1,2,3,4-tetrahydronaphthalene (ETN) were conjugated with glutathione (GSH) specifically at their benzylic oxiran carbons, with a marked difference in rate [(1R,2S)-(+)- less than (1S,2R)-(-)-ETNs] as well as in affinity for GSH S-transferase [Km: (1S,2R)-(-)- less than (1R, 2S)-(+)-ETNs], in rat liver cytosol to yield two diastereomeric S-(2-hydroxy-1,2,3,4-tetrahydronaphth-1-yl)glutathiones which were separable by reverse partition hplc. Enzymatic GSH conjugation of racemic ETN occurred preferentially with the (1S,2R)-(-)-component as a result of its retarding effect on the conjugation of the (1R,2S)-(+)-counterpart, one half of which remained in enantiomerically pure form in the incubation medium when the (1S,2R)-(-)-component had been completely conjugated.  相似文献   

19.
The mutagenicity of tetrachloroethene (tetra) and its S conjugate, S-(1,2,2-trichlorovinyl)glutathione (TCVG) was investigated using a modified Ames preincubation assay. TCVG was a potent mutagen in presence of rat kidney particulate fractions containing high concentrations of gamma-glutamyl transpeptidase (GGT) and dipeptidases. Purified tetra was not mutagenic without exogenous metabolic activation or under conditions favoring oxidative metabolism. Preincubation of tetra with purified rat liver glutathione (GSH) S-transferases in presence of GSH and rat kidney fractions resulted in a time-dependent formation of TCVG as determined by (HPLC) analysis and in an unequivocal mutagenic response in the Ames test. Experiments with tetra in the isolated perfused rat liver demonstrated TCVG formation and its excretion with the bile; bile collected after the addition of tetra to the isolated perfused liver was unequivocally mutagenic in bacteria in the presence of kidney particulate fractions. The mutagenicity was reduced in all cases by the GGT inhibitor serine borate or the beta-lyase inhibitor aminooxyacetic acid. These results support the suggestion that cleavage of the GSH S conjugate formed from tetra by the enzymes of the mercapturic acid pathway and by beta-lyase may be involved in the nephrocarcinogenic effects of this haloalkene in rats.  相似文献   

20.
Twenty-six flavonoids and related compounds were screened for their ability to modulate microsome mediated covalent adduct formation between [3H]benzo[a]pyrene ([3H]BP) and DNA in vitro. Some of these flavonoids, notably robinetin, quercetin, isorhamnetin and kaempferol were observed to inhibit the adduct formation significantly at very low levels. The unsubstituted flavone and some of the other flavonoids moderately inhibited this adduct formation, while some flavonoids were inactive, viz., most of the isoflavonoids and methylether derivatives of polyhydroxylated flavonoids. Structural features contributory towards the inhibitory activity of flavonoids appeared to be hydroxyl groups in 3 position of C ring, 5,7-positions of A ring and 3',4'- and 5'-positions of B ring. Methylation or glycosylation of hydroxyl group rendered the flavonoid less active or inactive. Flavanones, with saturated 2,3 double bond, were also inactive. Metabolic activation of BP to proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BP-7,8-dihydrodiol) was also measured in presence of some of these flavonoids. The extent of inhibition of metabolism by these flavonoids did not correlate with their ability to inhibit the adduct formation. Thus, suppression of metabolism did not appear to be a major contributory factor towards inhibition of adduct formation. The solvolysis in aqueous dioxane of (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE I), the ultimate carcinogen of BP, was accelerated in presence of selected flavonoids. Inactivation of BPDE I, therefore, appeared to be the major mechanism by which some of these flavonoids inhibited the adduct formation between BP and DNA, and this could be the basis for the anti-carcinogenic nature of these flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号