首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

2.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

3.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

4.
The concentrations of cytochrome P-450scc and ferredoxin, two of the three proteins which comprise the mitochondrial steroidogenic electron transport chain, were measured in granulosa and luteal cells from porcine ovaries by an immunoblot procedure. During the follicular phase of the ovarian cycle the concentration of cytochrome P-450scc increased 5-fold and ferredoxin increased 3-fold. When the large follicles developed into corpora lutea the cytochrome P-450scc concentration increased a further 7-fold while ferredoxin increased only 3-fold. These changes were coincident with an overall 4-fold increase in the concentration of ferredoxin reductase during follicular cell development and luteinization. Analysis of the data revealed that the concentration of ferredoxin, which shuttles electrons from ferredoxin reductase to cytochrome P-450scc, was always adequate to saturate both the reductase and cytochrome P-450scc. This came about from a co-ordinate increase in the concentration of cytochrome P-450scc and the concentration of ferredoxin minus ferredoxin reductase.  相似文献   

5.
The two main approaches presently used for cytochrome P-450scc modelling are as follows: i) the use of chemical compounds carrying activated oxygen species, e. g., peracids, organic hydroperoxides, iodosobenzene, etc., ii) the use of electrochemical reduction in the presence of redox-active compounds. In the present work, a new model system for simulation of steroidogenic electron transfer is proposed, which reduces cytochrome P-450 scc by NADPH in the absence of adrenodoxin reductase and adrenodoxin. Phenazine methosulfate is used as an electron carrier. More than 95% of cytochrome P-450scc is reduced in a model system. The reduction kinetics is characterized by a lag phase, thus indicating complex formation between cytochrome P-450scc and phenazine methosulfate or formation of intermediate reducing equivalents. NADH may also serve as an electron donor for cytochrome P-450scc. Phenazine methosulfate can reduce microsomal cytochrome P-450 LM2 and b5, but not cytochrome P-450 LM4. Superoxide dismutase does not affect the reduction, thus indicating that O9.- is not involved in the reduction process. The mechanism of hemoprotein reduction and the nature of intermediates which can be formed in the model system is proposed.  相似文献   

6.
Highly specific antibodies to adrenocortical cytochrome P-450scc as well as fragments F1 and F2 representing the N- and C-terminal sequences of the hemoprotein obtained by limited trypsinolysis were raised in rabbits. Antibodies to cytochrome P-450scc as demonstrated by the Ouchterlony diffusion analysis, immunoelectrophoresis and immunoblotting techniques interact with the hemoprotein and both fragments. Antibodies to cytochrome P-450scc fragments interact with the hemoprotein and corresponding antigens, but do not cross-react. To determine the localization of antigenic determinants in the polypeptide chain of cytochrome P-450scc, the interaction of antibodies to the hemoprotein and to its fragments F1 and F2 with limited trypsinolysis products was studied. All antibodies were found to effectively inhibit cholesterol transformation into pregnenolone in a reconstituted system. Using SDS electrophoresis followed by immunoblotting, the cross-reactivity of antibodies to cytochrome P-450scc and to its fragments with microsomal cytochromes P-450scc LM2 and LM4 as well as with mitochondrial cytochrome P-45027 was revealed. This finding testifies to the presence of common antigenic determinants in the hemoproteins.  相似文献   

7.
Cytochrome P-450scc and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of a cross-linked complex and 6% of free cytochrome P-450scc was obtained after purification on cholate-Sepharose. Cytochrome P-450scc in the cross-linked complex is not reduced in the presence of NADPH and adrenodoxin reductase, but completely preserves its high spin form in the presence of Tween-20 or pregnenolone. The use of radioactive labelled adrenodoxin, chemical cleavage of cytochrome P-450scc from the cross-linked complex by o-iodosobenzoic acid and HPLC for separation of peptides demonstrated that the cytochrome P-450scc complex with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450scc, i.e., Leu 88-Trp108 and Leu368-Trp417.  相似文献   

8.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Selective chemical modification of adrenocortical cytochrome P-450scc, responsible for key stages of steroid biogenesis, with tetranitromethane has been carried out. Nitration of the cytochrome P-450scc tyrosine residues results in heme protein inactivation with syncatalytic loss of enzyme activity. Analysis of the cytochrome P-450scc inactivation kinetics indicates that there are several pools of tyrosine residues, differing in their accessibility to tetranitromethane. The modification of cytochrome P-450scc results in changes in the hemeprotein spectral properties and its conformation which indicates to the involvement of essential tyrosine residue(s) in the heme-protein interaction. Cholesterol and adrenodoxin (high-spin effectors) prevent the inactivation of cytochrome P-450scc with tetranitromethane, i.e., protect the essential tyrosine residue(s) from modification. Possible functions of the tyrosine residues in the cytochrome P-450scc molecule are discussed.  相似文献   

10.
Three fractions of cytochrome P-450scc (denoted as fractions a, b, and c) were purified by a new procedure from bovine adrenocortical mitochondria. The amino-acid content analyses of these three fractions showed no difference. NH2-terminal amino-acid sequences of cytochrome P-450scc fractions, a and b agreed completely with the sequence deduced by nucleotide sequence of cDNA of cytochrome P-450scc mRNA (Morohashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., Inayama, S. and Omura, T. (1984) Proc. Natl. Acad. Sci. USA 81, 4647-4651), whereas the sequence of fraction c showed a missing of isoleucine at the NH2-terminal. COOH-terminal ámino-acid sequences of fractions a, b and c were -Gln-Ala-COOH, identical with the deduced sequence from the cDNA. Measurements of the enzymatic activities of cholesterol side-chain cleavage reaction revealed no distinct difference among these three fractions. Although each of these fractions appeared as a single protein staining band upon SDS-polyacrylamide gel electrophoresis, these fractions showed heterogeneities upon two-dimensional electrophoresis and chromatofocusing. Fraction a contained the major form of cytochrome P-450scc, and its isoelectric point was estimated to be pH 7.8 by isoelectric focusing under both native and denatured conditions, and this value was confirmed by chromatofocusing. Neither of the carbohydrate-specific stainings (such as periodic acid-Schiff staining and lectin-peroxidase stainings using concanavalin A, wheat-germ agglutinin, and soybean agglutinin) of purified cytochrome P-450scc fractions after the electrophoretic resolution on SDS-polyacrylamide gel could show cytochrome P-450scc fractions as glycoproteins, suggesting that the heterogeneities were not due to the glycosylation state.  相似文献   

11.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

12.
The single free cysteine at residue 95 of bovine adrenodoxin was labeled with the fluorescent reagent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS). The modification had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc, suggesting that the AEDANS group at Cys-95 was not located at the binding site for these molecules. Addition of adrenodoxin reductase, cytochrome P-450scc, or cytochrome c to AEDANS-adrenodoxin was found to quench the fluorescence of the AEDANS in a manner consistent with the formation of 1:1 binary complexes. F?rster energy transfer calculations indicated that the AEDANS label on adrenodoxin was 42 A from the heme group in cytochrome c, 36 A from the FAD group in adrenodoxin reductase, and 58 A from the heme group in cytochrome P-450scc in the respective binary complexes. These studies suggest that the FAD group in adrenodoxin reductase is located close to the binding domain for adrenodoxin but that the heme group in cytochrome P-450scc is deeply buried at least 26 A from the binding domain for adrenodoxin. Modification of all the lysines on adrenodoxin with maleic anhydride had no effect on the interaction with either adrenodoxin reductase or cytochrome P-450scc, suggesting that the lysines are not located at the binding site for either protein. Modification of all the arginine residues with p-hydroxyphenylglyoxal also had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc. These studies are consistent with the proposal that the binding sites on adrenodoxin for adrenodoxin reductase and cytochrome P-450scc overlap, and that adrenodoxin functions as a mobile electron carrier.  相似文献   

13.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

14.
Chemical modification of adrenocortical cytochrome P-450scc with diethyl pyrocarbonate has been carried out. The histidine residues and the protein amino groups were shown to undergo modification. Carbethoxylation was accompanied by the hemoprotein inactivation and the loss of enzymatic activity. Neither of the high spin effectors (i.e., substrate and adrenodoxin) protected cytochrome P-450scc either from inactivation or from the loss of enzymatic activity. The data obtained are discussed in terms of the functional role of histidine residues in the cytochrome P-450scc molecule.  相似文献   

15.
Highly specific antibodies to cytochrome P-450scc and its F1 and F2 fragments, representing N- and C-terminal sequences of the hemeprotein respectively, were raised in rabbits. These antibodies were found to be inhibitory (up to 50-90%) for the cholesterol transformation into pregnenolone in the reconstituted system, indicating the involvement of both F1 and F2 domains formed by the respective fragments in monooxygenase catalysis. Cytochrome P-450scc in mitoplasts is not accessible for trypsin as revealed by immunological techniques. However, the treatment of submitochondrial particles with trypsin results in two main fragments identified by immunoblotting in the presence of the monospecific antibodies as F1 and F2 fragments. This indicates that the trypsin sensitive 250-257 region in cytochrome P-450scc molecule connecting both domains is exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

16.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

17.
Difference spectroscopy was used to measure the binding of cholesterol sulfate (CS) to cytochrome P-450scc. The uncomplexed cytochrome and the complex of the cytochrome with adrenodoxin (ADX) were both titrated with CS in order to test whether ADX increased the affinity of the cytochrome for the sterol sulfate. The addition of ADX to the cytochrome had different effects on the binding of the sterol sulfate depending on several factors including: (1) The method of preparation of the cytochrome P-450scc, (2) The concentration of cytochrome P-450scc, (3) The method by which CS was suspended in aqueous solution, and (4) Whether or not the solutions of cytochrome contained non-ionic detergents. The results of this study suggest that the method of isolation of cytochrome P-450scc, and non-ionic detergents, greatly modulate the apparent affinity of cytochrome P-450scc for CS. In the absence of detergents the addition of adrenodoxin to dilute solutions of cytochrome P-450scc appears to enhance only slightly (1- to 2-fold) the affinity of the cytochrome for the sterol sulfate.  相似文献   

18.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1986,25(12):3563-3569
The effects of cholesterol and adrenodoxin binding on resonance Raman spectra of cytochrome P-450scc in both oxidized and CO-reduced states were examined. Upon cholesterol binding, oxidized cytochrome P-450scc showed a significant shift of spin equilibrium from low-spin to high-spin state. Addition of adrenodoxin caused a complete conversion of cholesterol-bound oxidized cytochrome P-450scc to a pure high-spin state that was considered to be in the hexacoordinated state judged by the v10 mode at 1620 cm-1 and v3 mode around 1485 cm-1. Cholesterol in substrate binding site may oppose a linear and perpendicular binding of carbon monoxide to the reduced heme iron, leading to the distorted Fe-C-O linkage. This is based on the following observations: (1) an increase of the Fe-CO stretching frequency to 483 from 477 cm-1 upon addition of cholesterol; (2) an enhanced photodissociability of bound carbon monoxide of CO complex of cytochrome P-450scc in the presence of cholesterol. As another aspect of the effect of cholesterol on the CO complex form of cytochrome P-450scc, the enhanced stability of the native form ("P-450" form) was observed. There was no additional effect of reduced adrenodoxin on the Raman spectra of the CO-reduced form of cytochrome P-450scc.  相似文献   

19.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

20.
The primary structure of the cholesterol side-chain cleavage cytochrome P-450 (P-450scc) from bovine adrenocortical mitochondria has been determined. At the initial stage an exhaustive chymotryptic digestion of carboxymethylated P-450scc was performed, and the amino acid sequence of 66 peptides was determined. At the second stage an investigation of the amino acid sequence of individual fragments I (Mr 29 800) and II (Mr 26 600) of the limited trypsinolysis of P-450scc was carried out. Fragment I was digested with trypsin, Staphylococcus aureus V8 proteinase and thermolysin; fragment II was cleaved with trypsin and S. aureus V8 proteinase. In addition, the amino acid sequence of some CNBr peptides of P-450scc has been investigated. The primary structure of cytochrome P-450scc determined with protein chemistry methods proved the multistage cholesterol transformation to pregnenolone to be catalyzed by a single species of cytochrome P-450scc which consists of 481 amino acids. The results from protein sequencing of P-450scc are in good agreement with those obtained recently from nucleotide sequencing. The localization of peptide bonds cleaved under limited proteolysis of P-450 with trypsin to fragments I and II, I and III (Mr 16 800) is presented. It is shown that the transformation of P-450scc to P-420 is accompanied by the appearance of an additional trypsin-sensitive peptide bond in the N-terminal part of P-450scc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号