首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Diaphragm pacing, which entails electrical stimulation to the phrenic nerve, is an effective means of managing patients with ventilatory insufficiency and intact lowermotor-neurone innervation of the diaphragm. The pacing apparatus is used to pace the right and left hemidiaphragms alternately to avoid fatigue, which may damage the muscle irreversibly. Among the important benefits of pacing in quadriplegics with paralysis or respiratory muscles are the social and psychological advantages of not being dependent on a mechanical ventilator.  相似文献   

3.
4.
This study tested the hypothesis that the extent of the decrement in (.)Vo(2max) and the respiratory response seen during maximal exercise in moderate hypobaric hypoxia (H; simulated 2,500 m) is affected by the hypoxia ventilatory and hypercapnia ventilatory responses (HVR and HCVR, respectively). Twenty men (5 untrained subjects, 7 long distance runners, 8 middle distance runners) performed incremental exhaustive running tests in H and normobaric normoxia (N) condition. During the running test, (.)Vo(2), pulmonary ventilation (Ve) and arterial oxyhemoglobin saturation (Sa(O(2))) were measured, and in two ventilatory response tests performed during N, a rebreathing method was used to evaluate HVR and HCVR. Mean HVR and HCVR were 0.36 +/- 0.04 and 2.11 +/- 0.2 l.min(-1).mmHg(-1), respectively. HVR correlated significantly with the percent decrements in (.)Vo(2max) (%d(.)Vo(2max)), Sa(O(2)) [%dSa(O(2)) = (N-H).N(-1).100], and (.)Ve/(.)Vo(2) seen during H condition. By contrast, HCVR did not correlate with any of the variables tested. The increment in maximal Ve between H and N significantly correlated with %d(.)Vo(2max). Our findings suggest that O(2) chemosensitivity plays a significant role in determining the level of exercise hyperventilation during moderate hypoxia; thus, a higher O(2) chemosensitivity was associated with a smaller drop in (.)Vo(2max) and Sa(O(2)) under those conditions.  相似文献   

5.
6.
We examined the effect of a dynamic, hypoxic stimulus upon the reflex respiratory responses of 15, conscious rat pups on post-natal days 5-7 in order to ascertain the influence of a non-adapting peripheral chemoreceptor discharge upon respiratory control during hypoxia in the newborn. Respiration was measured as integrated airflow into and out of a body plethysmograph. The respiratory response to 6 minutes of a 16-breath cycle (approximately 5 s) in FiO2 between 0.21 and 0.10 (alternating hypoxia) was compared with the response to 6 min of a constant FiO2 of 0.12 (non-alternating hypoxia). Ventilation increased significantly from a control level of 0.12 +/- 0.02 ml/s (mean +/- SEM) to 0.18 +/- 0.02 and 0.17 +/- 0.02 ml/s in non-alternating and alternating hypoxia runs respectively during the first minute (phase 1) of each run, after which ventilation in both run types fell progressively and significantly back towards control levels to reach, by the sixth minute (phase 2), 0.13 +/- 0.01 and 0.12 +/- 0.02 ml/s respectively. No significant difference was found between the levels of ventilation in non-alternating hypoxia and alternating hypoxia during either phase 1 (P greater than 0.10) or phase 2 (P greater than 0.60). No significant alternation was found in any respiratory variable at the frequency of the 16-breath hypoxic cycle during either phase 1 or phase 2 of non-alternating hypoxia. However, a significant alternation, at this frequency, of 37 +/- 6% (P less than 0.05 compared to control) was found in ventilation during phase 1 of alternating hypoxia which was further increased to 62 +/- 8% (P less than 0.05 compared to phase 1) during phase 2. In phase 1 the alternation was due primarily to significant alternation in inspiratory time whilst in phase 2 significant alternation also occurred in tidal volume, expiratory time and mean inspiratory flow. Our results show that the magnitude of hypoxic ventilatory depression (HVD) in the newborn is not affected by an alternating hypoxic stimulus and that, during phase 2, ventilation can still be stimulated by peripheral chemoreceptors. We suggest that peripheral chemoreceptor adaptation is unlikely to be a major cause of HVD in the newborn rat and that the magnitude of HVD is, in part, the result of a competitive interaction between peripheral chemoreceptor stimulation and a centrally-mediated inhibitory action of hypoxia.  相似文献   

7.
8.
9.
Pulmonary hypertension resulting from chronic hypoxia is at least partly caused by the increased production of reactive oxygen species (ROS). The goal of the presented study was to investigate the dynamics and the site of production of ROS during chronic hypoxia. In our study Wistar rats were kept for 1, 4 and 21 days in an isobaric hypoxic chamber (F(iO2)=0.1), while controls stayed in normoxia. We compared NO production in expired air, plasma and perfusate drained from isolated rat lungs and measured superoxide concentration in the perfusate. We also detected the presence of superoxide products (hydrogen peroxide and peroxynitrite) and the level of ROS-induced damage expressed as the concentration of lipid peroxydation end products. We found that the production and release of ROS and NO during early phase of chronic hypoxia has specific timing and differs in various compartments, suggesting the crucial role of ROS interaction for development of hypoxic pulmonary hypertension.  相似文献   

10.
11.
Respiratory muscle fatigue: a cause of ventilatory failure in septic shock   总被引:3,自引:0,他引:3  
The effect of endotoxic shock on the respiratory muscle performance was studied in spontaneously breathing dogs given Escherichia coli endotoxin (Difco Laboratories, 10 mg/kg). Diaphragmatic (Edi) and parasternal intercostal (Eic) electromyograms were recorded using fishhook electrodes. The recorded signals were then rectified and electrically integrated. Pleural, abdominal, and transdiaphragmatic (Pdi) pressures were recorded by a balloon-catheter system. After a short control period, the endotoxin was administered slowly intravenously (within 5 min). Death was secondary to respiratory arrest in all animals. All animals died within 150-270 min after the onset of endotoxic shock. Within 45-80 min of the endotoxin administration, mean blood pressure and cardiac output dropped to 42.1 +/- 4.1 and 40.1 +/- 6.0% (mean +/- SE) of control values, respectively, with little change afterward. Mean inspiratory flow rate and Pdi increased from control values of 0.27 +/- 0.03 l X s-1 and 5.75 +/- 0.7 cmH2O to mean values of 0.44 +/- 0.3 l X s-1 and 8.70 +/- 1.05 cmH2O and then decreased to 0.17 +/- 0.03 l X s-1 and 3.90 +/- 0.30 cmH2O before the death of the animals. There were no major changes in the mechanics of the respiratory system. Edi and Eic increased progressively to mean values of 360 +/- 21 and 263 +/- 22% of control, respectively, before the death of the animals. None of the dogs were hypoxic. Arterial PCO2 decreased from a control value of 42.9 +/- 1.7 Torr to a mean value of 29.9 +/- 2.8 Torr and then increased to 51 +/- 4.3 Torr before the death of the animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
R. S. Shapiro 《CMAJ》1978,119(11):1321-1323
  相似文献   

13.
14.
Nonobstructive (i.e., central) sleep apnea is a major cause of sleep-disordered breathing in patients with stable congestive heart failure (CHF). Although central sleep apnea (CSA) is prevalent in this population, occurring in 40-50% of patients, its pathogenesis is poorly understood. Dynamic loop gain and delay of the chemoreflex response to CO(2) was measured during wakefulness in CHF patients with and without CSA by use of a pseudorandom binary CO(2) stimulus method. Use of a hyperoxic background minimized responses derived from peripheral chemoreceptors. The closed-loop and open-loop gain, estimated from the impulse response, was three times greater in patients with nocturnal CSA (n = 9) than in non-CSA patients (n = 9). Loop dynamics, estimated by the 95% response duration time, did not differ between the two groups of patients. We speculate that an increase in dynamic gain of the central chemoreflex response to CO(2) contributes to the genesis of CSA in patients with CHF.  相似文献   

15.
16.
17.
活性氧、钙和心力衰竭   总被引:2,自引:0,他引:2  
活性氧信号和钙信号广泛存在于机体内,两者相互作用,共同参与调节机体多种生理功能及病理过程。本文对这两个信号系统之间的相互作用及相关机制、在心力衰竭过程中的作用及可能的临床应用前景进行了综述。  相似文献   

18.
Nasal and oral airway pressure-flow relationships.   总被引:3,自引:0,他引:3  
We examined the inspiratory and expiratory pressure-flow relationships of both the oral and nasal airways before and after exercise in normal upright subjects. With the use of a partitioned facemask, nasal resistance was measured using posterior rhinomanometry, and oral resistance was measured by recording transoral pressure during oral breathing. Both the nasal and oral pressure-flow relationships for inspiration and expiration were curvilinear and were well described by a power function of the form delta P = aVb (where P is pressure, V is flow, a and b are constants) (r2 = 0.96 +/- 0.01). The exponent b describes the curvilinearity of the pressure-flow curve and can be used to infer the flow regimen. At rest, the inspiratory nasal and oral curves suggested a similar degree of turbulence (b = 1.77 +/- 0.06 and 1.83 +/- 0.04, respectively). However, inspiratory flow regimens were inferred to be more turbulent than those during expiration both before and after exercise. After exercise, decreases in inspiratory nasal resistance at low flows were associated with a change in flow regimen from fully turbulent to orifice flow over the entire flow range. Thus the application of a power function to nasal and oral pressure-flow data permits representation of the whole relationship and allows insight into the nature of the flow regimens.  相似文献   

19.
20.
The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the beta-globin gene, beta108 Asn --> Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号