首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:检测寒颤对呼吸道复温的影响。方法:采用冷水浸泡降温和注射卡肌宁抑制寒颤的方法建立抑制寒颤的低体温犬模型。受试犬吸湿热空气(40.45℃,RH99.9%)及室温空气(19±1℃,RH30%~75%)复温各2h,不同温度空气复温的先后顺序随机安排。复温4h后,加压呼吸湿热空气复温使其恢复自主呼吸,继续呼吸湿热空气复温直至直肠温度(Tr)和食道温度(Te)恢复入水时温度。实验过程中采用间接测热法测定代谢产热量。结果:①抑制寒颤时,吸湿热空气2h可使Tr和Te平均每小时分别增高0.26~0.39℃和0.44—1.11℃,吸室温空气2h可使Tr和re平均每小时分别降低0.24-0.51℃和0.58~0.67℃,Tr和Te的变化与呼吸不同温度空气的先后顺序无关。②有寒颤、自主呼吸湿热空气时,Tr和Te的复温速度分别为2.26~2.33℃/h和1.96~2.38℃/h,较抑制寒颤、呼吸湿热空气时明显加快。③与抑制寒颤、加压呼吸湿热空气时的代谢产热量比较,受试犬恢复寒颤自主呼吸湿热空气时代谢产热量明显增高,使复温速度明显加快。结论:呼吸道复温有助于低体温机体复温。寒颤时机体代谢产热量明显增高,使复温速度明显加快。因此,检测呼吸道复温作用时应抑制寒颤,排除寒颤产热的干扰。  相似文献   

2.
Experimental data suggest the presence of sensory receptors specific to the nasopharynx that may reflexly influence respiratory activity. To investigate the effects of inspired air temperature on upper airway dilator muscle activity during nose breathing, we compared phasic genioglossus electromyograms (EMGgg) in eight normal awake adults breathing cold dry or warm humidified air through the nose. EMGgg was measured with peroral bipolar electrodes during successive trials of cold air (less than or equal to 15 degrees C) and warm air (greater than or equal to 34 degrees C) nasal breathing and quantified for each condition as percent activity at baseline (room temperature). In four of the subjects, the protocol was repeated after topical nasal anesthesia. For all eight subjects, mean EMGgg was greater during cold air breathing than during baseline (P less than 0.005) or warm air breathing (P less than 0.01); mean EMGgg during warm air breathing was not significantly changed from baseline. Nasal anesthesia significantly decreased the mean EMGgg response to cold air breathing. Nasal airway inspiratory resistance, measured by posterior rhinomanometry in six subjects under similar conditions, was no different for cold or warm air nose breathing [cold 1.4 +/- 0.7 vs. warm 1.4 +/- 1.1 (SD) cmH2O.l-1.s at 0.4 l/s flow]. These data suggest the presence of superficially located nasal cold receptors that may reflexly influence upper airway dilating muscle activity independently of pressure changes in awake normal humans.  相似文献   

3.
Role of tracheal and bronchial circulation in respiratory heat exchange   总被引:3,自引:0,他引:3  
Due to their anatomic configuration, the vessels supplying the central airways may be ideally suited for regulation of respiratory heat loss. We have measured blood flow to the trachea, bronchi, and lung parenchyma in 10 anesthetized supine open-chest dogs. They were hyperventilated (frequency, 40; tidal volume 30-35 ml/kg) for 30 min or 1) warm humidified air, 2) cold (-20 degrees C dry air, and 3) warm humidified air. End-tidal CO2 was kept constant by adding CO2 to the inspired ventilator line. Five minutes before the end of each period of hyperventilation, measurements of vascular pressures (pulmonary arterial, left atrial, and systemic), cardiac output (CO), arterial blood gases, and inspired, expired, and tracheal gas temperatures were made. Then, using a modification of the reference flow technique, 113Sn-, 153Gd-, and 103Ru-labeled microspheres were injected into the left atrium to make separate measurements of airway blood flow at each intervention. After the last measurements had been made, the dogs were killed and the lungs, including the trachea, were excised. Blood flow to the trachea, bronchi, and lung parenchyma was calculated. Results showed that there was no change in parenchymal blood flow, but there was an increase in tracheal and bronchial blood flow in all dogs (P less than 0.01) from 4.48 +/- 0.69 ml/min (0.22 +/- 0.01% CO) during warm air hyperventilation to 7.06 +/- 0.97 ml/min (0.37 +/- 0.05% CO) during cold air hyperventilation.  相似文献   

4.
Two common sources of error in blood pH and blood gas analysis were studied. The effect of delay in estimation was studied in 10 volunteers and 40 patients. Syringes were stored at 0 degree C, (crushed ice), 4 degrees C (refrigerator) and 22 degrees C (room temperature). The pressure of oxygen (PO2) fell significantly by 20 minutes at 4 degrees C and 22 degrees C but did not change significantly at 0 degree C for up to 30 minutes. Blood pH, pressure of carbon dioxide (PCO2), and base excess did not change significantly for up to 30 minutes at 4 degrees C and 22 degrees C and up to 60 minutes at 0 degrees C. The effect of air bubbles in the syringe was studied by leaving a single bubble or froth in contact with the blood for one to five minutes in 40 patients. Po2 rose significantly after two minutes'' contact with froth and two minutes'' contact with the air bubble, and PCO2 fell significantly after three minutes'' contact with the air bubble. Size of the bubble had little effect on rates of change. Blood pH, bicarbonate, TCO2, and base excess did not change significantly after up to five minutes'' contact. For accurate estimation of PO2 and PCO2 it is necessary to avoid frothing, to expel all air bubbles within two minutes, and to inject the sample into the machine within 10 minutes or store the syringe in crushed ice. The requirements for blood pH and base excess measurement are less exacting.  相似文献   

5.
Tracheobronchial blood flow increases with cold air hyperventilation in the dog. The present study was designed to determine whether the cooling or the drying of the airway mucosa was the principal stimulus for this response. Six anesthetized dogs (group 1) were subjected to four periods of eucapnic hyperventilation for 30 min with warm humid air [100% relative humidity (rh)], cold dry air (-12 degrees C, 0% rh), warm humid air, and warm dry air (43 degrees C, 0% rh). Five minutes before the end of each period of hyperventilation, tracheal and central airway blood flow was determined using four differently labeled 15-micron diam radioactive microspheres. We studied another three dogs (group 2) in which 15- and 50-micron microspheres were injected simultaneously to determine whether there were any arteriovenous communications in the bronchovasculature greater than 15 micron diam. After the last measurements had been made, all dogs were killed, and the lungs, including the trachea, were excised and blood flow to the trachea, left lung bronchi, and parenchyma was calculated. Warm dry air hyperventilation produced a consistently greater increase in tracheobronchial blood flow (P less than 0.01) than cold dry air hyperventilation, despite the fact that there was a smaller fall (6 degrees C) in tracheal tissue temperature during warm dry air hyperventilation than during cold dry air hyperventilation (11 degrees C), suggesting that drying may be a more important stimulus than cold for increasing airway blood flow. In group 2, the 15-micron microspheres accurately reflected the distribution of airway blood flow but did not always give reliable measurements of parenchymal blood flow.  相似文献   

6.
The standard rates of O2 consumption of larval Mordacia mordax (weight range 1.3-2.3 g), after these ammocetes had been in humidified air for 18 hr, were 26.8, 46.3 and 71.2 microL x g(-1) x hr(-1) at 10, 15 and 20 degrees C, respectively. The corresponding rates of CO2 excretion were 20.7, 35.6 and 54.1 microL x g(-1) x hr(-1). The RQs at the three temperatures were essentially identical (0.76 or 0.77) and similar to that of adults of the lamprey Geotria australis in air at 15 degrees C. The above RQs for ammocoetes, which are probably similar to those that would be recorded in water, are consistent with the view that the aerobic respiration of these animals relies predominantly on lipid as an energy source, but that some energy is derived from carbohydrate and/or protein. The RQs for larval and adult lampreys in air lie well within the range recorded for amphibious fishes in air.  相似文献   

7.
Upper airway cooling and l-menthol reduce ventilation in the guinea pig.   总被引:1,自引:0,他引:1  
Cooling of the upper airway, which stimulates specific cold receptors and inhibits laryngeal mechanoreceptors, reduces respiratory activity in unanesthetized humans and anesthetized animals. This study shows that laryngeal cooling affects the pattern of breathing in the guinea pig and assesses the potential role of cold receptors in this response by using a specific stimulant of cold receptors (l-menthol). The response to airflows (30 ml/s, 10-s duration) through the isolated upper airway was studied in 23 anesthetized (urethan, 1 g/kg ip) guinea pigs breathing through a tracheostomy. Respiratory airflow, tidal volume, laryngeal temperature, and esophageal pressure were recorded before the challenges (control), during cold airflows (25 degrees C, 55% relative humidity), and during warm airflows (37 degrees C, saturated) with or without the addition of l-menthol. Whereas warm air trials had no effect, cold air trials, which lowered laryngeal but not nasal temperature, reduced ventilation (VE) to 85% of control, mainly by prolonging expiratory time (TE, 145% of control), an effect abolished by laryngeal anesthesia. Addition of l-menthol to the warm airflow caused a greater reduction in VE (41% of control) by prolonging TE (1,028% of control). Nasal anesthesia markedly reduced the apneogenic effect of l-menthol but did not affect the response to cold air trials. In conclusion, both cooling of the larynx and l-menthol in the laryngeal lumen reduce ventilation. Exposure of the nasal cavity to l-menthol markedly enhances this ventilatory inhibition; considering the stimulatory effect of l-menthol on cold receptors, these results suggest a predominant role of nasal cold receptors in this response.  相似文献   

8.
It has been suggested that a thermal countercurrent exchange may occur in the cerebral vascular bed of humans, thereby creating for the brain a state of relative thermal independence with regard to the rest of the body. However, worrying questions have arisen concerning this suggestion. Experiments were carried out on seven young male volunteers. Hyper- and hypothermic conditions were produced by immersion in water at 38.5 degrees C and 25 degrees C, respectively. During the last few minutes of immersion, the face was cooled or warmed by ventilation with a 200 l.min-1 air flow at 5 degrees C or 40 degrees C, respectively. Internal and peripheral temperatures were recorded. Blood flow in the anastomotic vessels between face and brain was measured by Doppler techniques associated with computerized frequency analysis. The general responses were as classically described, i.e. an increase in peripheral and central temperatures during immersion in the warm bath and a decrease in these variables in the cold bath. The reactions produced by cooling or warming the face were small and easily explained by the direct changes of the heat load they induced. Whatever the thermal conditions, the blood flow in the anastomotic vessels between the vascular bed of the face and that of the brain was never reversed. It was concluded that there was no experimental evidence for an efficient thermal counter-current exchange in the vascular bed of the human head.  相似文献   

9.
By use of successive increments of discontinuous work with an arm-leg cycle ergometer the VO2, Q, SV, and HR were studied in six male subjects at rest and during exercise in air and in water at 18, 25, and 33 degrees C. The Q values obtained by CO2 rebreathing were reproducible. VO2 was linearly related to work with the plots for air and 33 degrees C water being similar. However, during work in 25 and 18 degrees C water, the VO2 averaged 9.0% (150 ml) and 25.3% (400 ml) higher, respectively, than values observed in 33 degrees C water, with the largest differences observed in leaner subjects. The plot of HR-VO2 was linear and almost identical during work in air and 33 degrees C water, but shifted significantly to the right in cooler water. VO2 averaged 250-700 ml higher in cold water compared to air and 33 degrees C water at a given mean heart rate. The Q vs. VO2 line was similar during work in air and in water with no effect of water or temperature. At similar levels of VO2, SV was significantly larger (P less than 0.05) in 25 and 18 degrees C water than in air or 33 degrees C water. Consequently, the reduction in heart rate during work in cold water was entirely compensated for by a proportionate increase in the SV of the heart. Q was therefore maintained at similar levels of energy expenditure in air and in 18, 25, and 30 degrees C water.  相似文献   

10.
Recent studies have suggested that the inhalation of cold air through the nose is associated with the subsequent release of mediators of immediate hypersensitivity. To determine if mucosal surface heat and water loss influence the nasal functional response to cold air, we measured nasal resistance by posterior rhinomanometry before and 1, 5, and 10 min after a 4-min period of isocapnic hyperventilation (30 l/min) through the nose in nine healthy subjects (5 males, 4 females; aged 25-39 yr) while they inhaled air at 0 degrees C. During the challenge period, the subjects breathed either in and out of the nose or in through the nose and out through the mouth. No changes in nasal resistance developed when subjects breathed exclusively through the nose; however, when subjects breathed in through the nose and out through the mouth, nasal resistance was increased 200% at 1 min (P less than 0.01) after the challenge and returned to baseline values by 10 min after cessation of the challenge. These data indicate that nasal functional responses to cold dry air are dependent on the pattern of the ventilatory challenge. If the heat given up from the nasal mucosa to the incoming air is not recovered during expiration (as is the case with inspiration through the nose and expiration through the mouth), nasal obstruction will occur. Hyperpnea of cold air, per se, does not influence nasal resistance.  相似文献   

11.
To assess the ability of the nose to warm and humidify inhaled air, we developed a nasopharyngeal probe and measured the temperature and humidity of air exiting the nasal cavity. We delivered cold, dry air (19-1 degrees C, <10% relative humidity) or hot, humid air (37 degrees C, >90% relative humidity) to the nose via a nasal mask at flow rates of 5, 10, and 20 l/min. We used a water gradient across the nose (water content in nasopharynx minus water content of delivered air) to assess nasal function. We studied the characteristics of nasal air conditioning in 22 asymptomatic, seasonally allergic subjects (out of their allergy season) and 11 nonallergic normal subjects. Inhalation of hot, humid air at increasingly higher flow rates had little effect on both the relative humidity and the temperature of air in the nasopharynx. In both groups, increasing the flow of cold, dry air lowered both the temperature and the water content of the inspired air measured in the nasopharynx, although the relative humidity remained at 100%. Water gradient values obtained during cold dry air challenges on separate days showed reproducibility in both allergic and nonallergic subjects. After exposure to cold, dry air, the water gradient was significantly lower in allergic than in nonallergic subjects (1,430 +/- 45 vs. 1,718 +/- 141 mg; P = 0.02), suggesting an impairment in their ability to warm and humidify inhaled air.  相似文献   

12.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

13.
Sublingual and oesophageal temperatures were compared at various air temperatures in 16 subjects. In warm air (25-44 degrees C) sublingual temperatures stabilized within plus or minus 0-45 degrees C of oesophageal temperatures, but in air at room temperature (18-24 degrees C) they were sometimes as much as 1-1 degrees C below and in cold air (5-10 degrees C) as much as 4-4 degrees C below oesophageal readings. The sublingual-oesophageal temperature difference in cold air was greatly reduced by keeping the face warm, but it was not reduced in two patients breathing through tracheostomies and thereby eliminating cold air flow from the nose and pharynx. Parotid saliva temperature was low and saliva flow high during exposure, and cold saliva seemed to be mainly responsible for the erratic depression of sublingual temperature in the cold. These results indicate hazards in the casual use of sublingual temperatures, and indicate that external heat may have to be supplied to enable them to give reliable clinical assessments of body temperature.  相似文献   

14.
The effect of cold exposure (-10 degrees C, air speed--2.5 m/sec, 40 minutes) on physical activity, cognitive processes and metabolic status of 75 volunteers, healthy men of 20-24, was studied in termobarocomplex Tabaj (Japan). Cold exposure reduced physical and cognitive activity, the activity of kreatine phosphokinase, superoxide dismutase, the levels of redox glutation and pyruvate. Preliminary administration of adaptogenic drug trekrezan 0.2 g prior to cold exposure normalized the indexes studied of physical activity and metabolic status. It is suggested that trekrezan can be used as a meteoadaptogenic drug for rapid and effective adaptation to cold exposure of environment.  相似文献   

15.
Mechanism of afterdrop after cold water immersion   总被引:3,自引:0,他引:3  
It was hypothesized that if afterdrop is a purely conductive phenomenon, the afterdrop during rewarming should proceed initially at a rate equal to the rate of cooling. Eight male subjects were cooled on three occasions in 22 degrees C water and rewarmed once by each of three procedures: spontaneous shivering, inhalation of heated (45 degrees C) and humidified air, and immersion up to the neck in 40 degrees C water. Deep body temperature was recorded at three sites: esophagus, auditory canal, and rectum. During spontaneous and inhalation rewarming, there were no significant differences between the cooling (final 30 min) and afterdrop (initial 10 min) rates as calculated for each deep body temperature site, thus supporting the hypothesis. During rapid rewarming, the afterdrop rate was significantly greater than during the preceding cooling, suggesting a convective component contributing to the increased rate of fall. The rapid reversal of the afterdrop also indicates that a convective component contributes to the rewarming process as well.  相似文献   

16.
The effects of repeated cold water immersion on thermoregulatory responses to cold air were studied in seven males. A cold air stress test (CAST) was performed before and after completion of an acclimation program consisting of daily 90-min cold (18 degrees C) water immersion, repeated 5 times/wk for 5 consecutive wk. The CAST consisted of resting 30 min in a comfortable [24 degrees C, 30% relative humidity (rh)] environment followed by 90 min in cold (5 degrees C, 30% rh) air. Pre- and postacclimation, metabolism (M) increased (P less than 0.01) by 85% during the first 10 min of CAST and thereafter rose slowly. After acclimation, M was lower (P less than 0.02) at 10 min of CAST compared with before, but by 30 min M was the same. Therefore, shivering onset may have been delayed following acclimation. After acclimation, rectal temperature (Tre) was lower (P less than 0.01) before and during CAST, and the drop in Tre during CAST was greater (P less than 0.01) than before. Mean weighted skin temperature (Tsk) was lower (P less than 0.01) following acclimation than before, and acclimation resulted in a larger (P less than 0.02) Tre-to-Tsk gradient. Plasma norepinephrine increased during both CAST (P less than 0.002), but the increase was larger (P less than 0.004) following acclimation. These findings suggest that repeated cold water immersion stimulates development of true cold acclimation in humans as opposed to habituation. The cold acclimation produced appears to be of the insulative type.  相似文献   

17.
It is hypothesized that some of the variability in the conclusions of several human cold adaptation studies could be explained if not only were the changes in core and shell temperatures taken into account, before and after cold adaptation, but also the absolute temperatures and metabolic rate in both thermally neutral environments and in the cold. Such an approach was used in a group of volunteers before and after a ski journey (3 weeks at -20 to -30 degrees C) across Greenland. Eight subjects were submitted to cold tests (Tdb = 1 degree C, r.h. = 40%, wind speed = 0.8 m.s-1) for 2 hours. Thermoregulatory changes were also monitored in a neutral environment (Tdb = 30 degrees C). In the neutral environment, the arctic journey increased metabolic rate (11.2%; P less than 0.05) and mean skin temperature [Tsk: 33.5 (SEM 0.2) degrees C vs 32.9 (SEM 0.2) degrees C, P less than 0.05]. During the cold test, the arctic journey was associated with a lower final rectal temperature [36.8 (SEM 0.2) degrees C vs 37.3 (SEM 0.2) degrees C, P less than 0.01], a lower final Tsk [20.7 (SEM 0.4) degrees C vs 21.2 (SEM 0.3) degrees C, P less than 0.01] with no change in metabolic heat production. These observations are indicative of an hypothermic insulative isometabolic general cold adaptation, which was associated with a local cold adaptation of the extremities, as shown by warmer foot temperatures [12.3 (SEM 0.9) degrees C vs 9.8 (SEM 0.9) degrees C, P less than 0.001].  相似文献   

18.
Metabolic, temperature, and cardiorespiratory responses of 19 healthy males, age range 18-30 yr for one group and 40-55 yr for another, were studied during 210 minutes submaximal work at 35% Vo2 max. The subjects were exposed to four different pollutant gas mixtures at two different temperatures, 25 degrees C and 35 degrees C (relative humidity 30%). The four gas mixtures were filtered air (FA), 50 ppm carbon monoxide in filtered air (CO), 0.24 ppm peroxyacetyl nitrate in filtered air (PAN), and a combination of all three mixtures (PANCO). In the CO exposure, the heart rate was significantly greater than that observed during FA conditions (P less than 0.05). Metabolic and thermoregulatory responses to long-term work were not different in the various pollutant environments. Significant decreases in stroke volume and increases in heart rate were observed during the course of the 25 degrees C exposures with no alteration in cardiac output. Heart rates were higher during 35 degrees C exposures while cardiac output remained at the same level with a consequent further reduction in stroke output.  相似文献   

19.
Influenza C virus was intranasally administered to volunteers; most were infected and nine developed symptoms of common cold.Increasing titres of serum haemagglutination-inhibiting antibody and complement-fixing antibody were detected. Virus neutralizing activity in nasal secretion was not correlated with either resistance to infection or the occurrence of overt illness. Interferon was detected in the nasal secretions of some subjects.  相似文献   

20.
The experiment was carried out on adult male guinea pigs not adapted to cold at temperatures of 29 degrees, 20 degrees and 12 degrees C. During 150 minutes after nembutal injection the following values were recorded: oxygen consumption, subcutaneous, cutaneous and hair-coat temperatures. Using Hatfield's disc heat loss from the body surface by radiation and convection was measured. Nembutal not only inhibited thermogenetic processes at low ambient temperature, but decreased also heat production in a thermoneutral environment. This effect increased with decreasing ambient temperature. At the same time, there was a reduction in heat loss, although in a lower degree. The final result was a fall of the rectal temperature (even by 10 degrees C in a cold environment). Following nembutal administration skin thermoinsulation decreased slightly but the thermoinsulating activity of the hair-coat increased (the pilomotor response was more pronounced than in waking animals). Thermoregulation disturbances induced by nembutal included mainly thermogenesis impairment. The effect of general anaesthesia on heat loss was without any greater importance for maintenance of thermic homeostasis of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号