首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA marker can be used for precise plant cultivar identification. However, DNA markers have often not been used effectively for the identification of plant cultivars due to a lack of an effective analysis strategy. We used a novel strategy for effective identification of plant individuals based on a new way of recording DNA fingerprints of the genotyped plants; a cultivar identification diagram can be manually generated and used as key reference information for quick identification of plant and/or seed samples. Forty-seven pomegranate varieties popularly cultivated in various provinces of China were subjected to RAPD marker analysis. Using the cultivar identification diagram strategy, they were clearly separated by the fingerprints of 11 RAPD primers. The utility and accuracy of the cultivar identification diagram analysis results were confirmed by the identification of three randomly chosen groups of cultivars among the 47 varieties.  相似文献   

2.
DNA markers have useful applications in cultivar identification. A novel analysis approach called cultivar identification diagram (CID) was developed using DNA markers in the separation of plant individuals. This new strategy is less time- and cost-consuming, has reliable results, and was constructed for fingerprinting. Ten 11-mer primers were used to amplify the genotypes; all 95 peach genotypes (from the National Peach Germplasm Repository, in Nanjing, China) were distinguished by a combination of 54 primers. The utilization of the CID among these 95 peach cultivars was also verified by the identification of three randomly chosen groups of cultivars. This identification showed some advantages including the use of fewer primers and easy separation of all cultivars by the corresponding primers marked in the right position on the CID. This peach CID could provide the information to separate any peach cultivars of these 95, which may be of help to the peach industry in China and for the utilization of DNA markers to identify other plant species.  相似文献   

3.
Identification and classification of celery cultivars with RAPD markers   总被引:28,自引:0,他引:28  
Summary Twenty-one celery (Apium graveolens L. var. dulce) cultivars, one celeriac (var. rapaceum) and one annual smallage (var. secalinum) cultivar were screened for polymorphic RAPD (Random Amplified Polymorphic DNA) markers with 28 arbitrary 10-mer primers. Among a total of 309 bands observed, 29 (9.3%) were polymorphic in the 23 cultivars screened, but only 19 (6.1%) markers were polymorphic within the 21 type dulce cultivars. These markers were sufficient to distinguish each of the cultivars used. The average marker difference was 6.4 between two celery cultivars, 16.7 between celery and annual smallage, 14.7 between celery and celeriac, and 12.0 between annual smallage and celeriac. The celery cultivars surveyed were classified into three groups based on the marker differences. The relationship among the dulce-type cultivars concluded from this research is basically consistent with the known lineage of the cultivars and the previous study using stem protein and isozyme markers. RAPD technology provides a new alternative for cultivar identification and classification in celery.  相似文献   

4.
Identification of broccoli and cauliflower cultivars with RAPD markers   总被引:43,自引:0,他引:43  
Summary RAPD (Random Amplified Polymorphic DNA) markers generated by 4 arbitrary 10-mer primers, discriminated 14 broccoli and 12 cauliflower cultivars (Brassica oleracea L.) by banding profiles. The size of the amplified DNA fragments ranged from 300 to 2600 base pairs. Twenty-eight percent of the markers were fixed in both broccoli and cauliflower, whereas 12.5% were specific to either crop. The rest were polymorphic in either or both crops. The markers generated by two and three primers were sufficient to distinguish each of the broccoli and cauliflower cultivars, respectively. The average difference in markers was 14.5 between broccoli and cauliflower markers, 5.8 between two broccoli cultivars and 7.9 between two cauliflower cultivars. Larger differences for each crop were found between cultivars from different seed companies than within the same company. RAPD markers provide a quick and reliable alternative to identify broccoli and cauliflower cultivars.  相似文献   

5.
Variation of cytosine methylation in 57 sweet orange cultivars   总被引:1,自引:0,他引:1  
Sweet orange is an important group of citrus cultivars, which includes a number of bud sport cultivars. Little is known about the CpG methylation status of the CCGG sequences in the orange genome. In this study, methylation-sensitive amplification polymorphism (MSAP), based on the application of isoschizomers (Hpa II and Msp I), was first used to analyze cytosine methylation patterns in 57 orange cultivars that were not fully differentiated by regular DNA molecular markers. Three types of bands were generated from ten primer pairs. Type I bands were present following restriction with Eco RI + Hpa II and Eco RI + Msp I; type II or type III were present only following restriction with either Eco RI + Hpa II or with Eco RI + Msp I. The total number of these three types of bands was 802, 72, and 157, respectively. Among these, the number of polymorphic bands were 244 (30.2%), 23 (31.9%), and 32 (20.4%), in type I, II and III, respectively. The methylation patterns of these 57 cultivars are discussed and assessed by dendrograms derived from the analysis of polymorphic MSAP bands. The distribution of polymorphic bands of the above three types demonstrate the methylation patterns and frequency at the cytosine loci. We suggest that methylation events could be more frequent than demethylation events, and that the methylation patterns maybe associated with phenotypic traits.  相似文献   

6.
Identification of apple cultivars using RAPD markers   总被引:25,自引:0,他引:25  
Summary Eleven apple cultivars were differentiated using randomly amplified polymorphic DNA (RAPD) markers obtained by the polymerase chain reaction (PCR). The variability of the technique and of the origin of the DNA extract was analyzed. A set of bands consistent in their presence or absence was chosen to create a differentiating band pattern. A key is proposed by which one can differentiate apple cultivars using commercially available prime.  相似文献   

7.
Genetic fingerprinting of Australian cotton cultivars with RAPD markers.   总被引:15,自引:0,他引:15  
D S Multani  B R Lyon 《Génome》1995,38(5):1005-1008
RAPD (random amplified polymorphic DNA) markers generated by 30 random decamer primers were used to fingerprint 12 released cultivars and a breeding line of Gossypium hirsutum and 1 cultivar of G. barbadense presently under cultivation in Australia. Among a total of 453 developed markers, 69 (15.2%) were only present (unique) in the G. barbadense cultivar Pima S-7. Of the remaining markers, 128 (33.3%) were fixed in all 13 G. hirsutum cultivars. In pairwise comparisons of the degree of band sharing, nine closely-related cultivars showed 92.1-98.9% genetic similarity. Cluster analysis of genetic distance estimates between each of the cultivars revealed phylogenetic relationships in broad agreement with the known lineage of the cultivars. Ten of the G. hirsutum cultivars can be characterized individually based upon cultivar-specific RAPD markers, thus making it possible to differentiate closely related cultivars by molecular markers.  相似文献   

8.
A total of 91 wild olive accessions and 31 olive cultivars growing in the Extremadura region of central-western Spain were analyzed using morphological traits and RAPD markers. We focused on three main and 16 minor Spanish olive cultivars that are recognized as native or local to the Extremadura region. The five arbitrary 10-mer primers tested on the olive cultivars gave 67 polymorphic bands, representing 91% of the total amplification products. The number of bands per primer ranged from 9 to 18, whereas the number of polymorphic bands ranged from 8 to 17. All the cultivars could be identified by a combination of three primers (OPF-6, OPA-8, and OPK-16); four cultivar-specific markers were detected. The minor local "Jariego" and "Tempranillo" cultivars showed the most distal similarities. The resulting dendrogram, using the unweighted pair-group method with arithmetic mean clustering algorithm, depicted the pattern of relationships between the local Extremadura cultivars and the cultivars from geographically connected regions. This analysis showed a correlation between most of the minor local cultivars and the geographical origin; there was no apparent clustering according to morphological traits or fruit use of olive cultivars when these parameters were used as analysis criteria.  相似文献   

9.
The difficulty in adult tissue genetic transformation in woody species is still an obstacle to be overcome, including in most sweet orange cultivars of the Brazilian citrus industry. This work reports that, after in vitro culture adjustments, transgenic adventitious buds of ‘Hamlin’, ‘Pêra’, and ‘Valencia’ sweet oranges (Citrus sinensis L. Osbeck) were recovered using adult material as explant source, in genetic transformation experiments via Agrobacterium tumefaciens. The transgenic buds were identified by the GUS histochemical analysis and confirmed by PCR analysis, which indicated the presence of an amplified fragment of 817 bp corresponding to the uidA gene sequence. The efficiencies of genetic transformation for ‘Hamlin’, ‘Pêra’, and ‘Valencia’ sweet orange cultivars were 2.5, 1.4, and 3.7%, respectively. Media supplemented with auxins and cytokinins during co-culture, and media with high concentrations of cytokinins (3 mg L−1) during transgenic selection led to the transformation and, consequently, the regeneration of adequate number of adventitious buds for the three cultivars. The use of sonication during the explant disinfection was not effective to reduce endophytic contamination and reduced transformation efficiency.  相似文献   

10.
A first linkage map of pecan cultivars based on RAPD and AFLP markers   总被引:7,自引:0,他引:7  
We report here the first genetic linkage maps of pecan [Carya illinoinensis (Wangenh.) K. Koch], using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. Independent maps were constructed for the cultivars Pawnee and Elliot using the double pseudo-testcross mapping strategy and 120 F1 seedlings from a full-sib family. A total of 477 markers, including 217 RAPD, 258 AFLP, and two morphological markers were used in linkage analysis. The Pawnee linkage map has 218 markers, comprising 176 testcross and 42 intercross markers placed in 16 major and 13 minor (doublets and triplets) linkage groups. The Pawnee linkage map covered 2,227 cM with an average map distance of 12.7 cM between adjacent markers. The Elliot linkage map has 174 markers comprising 150 testcross and 22 intercross markers placed in 17 major and nine minor linkage groups. The Elliot map covered 1,698 cM with an average map distance of 11.2 cM between adjacent markers. Segregation ratios for dichogamy type and stigma color were not significantly different from 1:1, suggesting that both traits are controlled by single loci with protogyny and green stigmas dominant to protandry and red stigmas. These loci were tightly linked (1.9 cM) and were placed in Elliot linkage group 16. These linkage maps are an important first step towards the detection of genes controlling horticulturally important traits such as nut size, nut maturity date, kernel quality, and disease resistance.  相似文献   

11.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

12.
Identification of Prunus armeniaca cultivars by RAPD and SCAR markers   总被引:2,自引:0,他引:2  
Nineteen cultivars of apricot (Prunus armeniaca) were distinguished using random amplified polymorphic DNA (RAPD) markers. One decamer out of 44 used was useful to differentiate cultivars of the Campania Region from those of Northern Italy, North America and Greece. A sequence characterized amplified region (SCAR) marker was obtained. The results provide a protocol to fingerprint DNA of apricots as an efficient way to quality control and fraud prevention.  相似文献   

13.
Accurate and reliable cultivar identification of crop species is essential to guarantee plant material identity for purposes of registration, cultivar protection and production. To facilitate identification of plant cultivars, we developed a novel strategy for efficient recording of DNA molecular fingerprints in genotyped plant individuals. These fingerprints can be used as efficient referential information for quick plant identification. We made a random amplified polymorphic DNA (RAPD) marker analysis of 68 pear cultivars. All pear genotypes could be distinguished by a combination of eight 11-mer primers. The efficiency of the method was further verified by correct identification of four cultivars randomly chosen from the initial 68. The advantages of this identification include use of fewer primers and ease of cultivar separation by the corresponding primers marked on the cultivar identification diagram. The cultivar identification diagram can efficiently serve for pear cultivar identification by readily providing the information needed to separate cultivars. To the best of our knowledge, this is the most efficient strategy for identification of plant varieties using DNA markers; it could be employed for the development of the pear industry and for the utilization of DNA markers to identify other plant species.  相似文献   

14.
The potential of bulk analyses of RAPD and ISSR-PCR markers for fingerprinting purposes was evaluated using ten RAPD and ten ISSR primers. The phylogenetic relationships of 16 barley cultivars from different countries, and all having a known pedigree, were analysed using 353 PCR markers (125 RAPDs and 228 ISSRs). The band profiles generated were reproducible in spite of the different DNA extractions, PCR techniques, electrophoretic methods and gel scorings used. The RAPD primer S10 and four ISSR primers (811, 820, 835 and 881) were both able to distinguish all cultivars. A strong and quite linear relationship was observed between Resolving Power (Rp) of a primer and its ability to distinguish genotypes. The dendrograms obtained using these two molecular markers are in agreement with their known origin, showing clusters that separate very well the spring/winter and six-rows/two-rows cultivars. Thus, bulk analyses of RAPD and ISSR PCR markers provides a quick, reliable and highly informative system for DNA fingerprinting and also permit to establish genetic relationships which agree with, by other means, known origin of the cultivars.  相似文献   

15.
Molecular variability among seven cultivars of A. deliciosa var. deliciosa was investigated through RAPD markers. Thirty four decamer primers were screened generating polymorphic patterns of amplified DNA for these cultivars. Twenty one selected primers gave clear and reporducible patterns. A total of 430 bands were produced and 29.37% of them were polymorphic. The patterns distinguished between the cultivars and their analysis established an approach to classification within A. deliciosa var. deliciosa based on RAPD markers. The dendrogram clearly differentiated male from female cultivars. While abbot and allison female cultivars were closely related, bruno and abbot female cultivars showed maximum dissimilarity.  相似文献   

16.
17.
We analyzed 24 sweet and wild cherry genotypes collected in Czech Republic to determine genetic variation, using previously described 16 SSR primers to adapt a fast, reliable method for preliminary screening and comparison of sweet cherry germplasm collections. All SSRs were polymorphic and they were able all together to distinguish unambiguously the genotypes. These SSR primers generated 70 alleles; the number of alleles per primer ranged from 2 to 7, with a mean of 4.4 putative alleles per primer combination. The primer UDP-98-412 gave the highest number of polymorphic bands (totally 7), while Empa2 and Empa3 gave the lowest number (2). The allele frequency varied from 2.1% to 87.5%. We observed 10% of unique alleles at different loci. The observed heterozygosity value ranged from 0.25 to 0.96 with an average of 0.72 while expected heterozygosity value varied from 0.22 to 0.75 with an average of 0.59. The PIC value ranged from 0.21 to 0.71 with a mean value of 0.523. Cluster analysis separated the investigated cultivars in two groups. High level of genetic diversity obtained in the collection and proved to be sufficiently genetically diverse and therefore these genotypes would be useful to breeders for the development of new cherry cultivars.  相似文献   

18.
Rapid identification of white-Engelmann spruce species by RAPD markers   总被引:7,自引:0,他引:7  
Fragments of random amplified polymorphic DNA (RAPDs) were used as markers to distinguish Picea glauca (Moench) Voss (white spruce) and Picea engelmannii Parry (Engelmann spruce). These species and their putative hybrids are difficult to differentiate morphologically and are collectively known as interior spruce. Four oligodeoxynucleotide decamer primers showed species-specific amplification products between white spruce and Engelmann spruce. These fragments are highly conserved among seed lots and individual trees of each species from diverse geographic origins. The consistency and reproducibility of these species-specific amplification products were tested in more than two amplification reactions. Therefore, RAPD markers can provide genetic markers for easy and rapid identification of the specific genetic entry of these spruce species and their reported putative hybrids. According to the frequencies of the species-specific RAPD markers, it is possible to estimate the hybrid fraction, indicative of true introgression between the two species. These results are useful for quick identification of both species and their hybrid swarms at any stage in the sporophyte phase of the life cycle, for determining the occurrence and the magnitude of introgressive hybridization in an overlap zone between the two species, and for certification purposes in operational re-forestation and tree-improvement programs.  相似文献   

19.
Randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to analyse the genetic diversity of Portuguese Prunus dulcis cultivars and their relationship to important foreign cultivars. Of the primers tested, 6 (out of 60) RAPD and 5 (out of 18) ISSR primers were selected for their reproducibility and high polymorphism. Out of 124 polymerase chain reaction fragments that were scored, 120 (96.8%) were polymorphic. All the plants could be discriminated and constitute a very heterogeneous group. Five unidentified almond plants found in the region of Foz Côa (north Portugal) and wild almond (P. webbii) from Italy and Spain were also included. Four main groups of plants could be distinguished: P. dulcis cultivars; one Foz Côa plant; P. webbii; and P. persica (outgroup). The segregating Foz Côa plant may represent a feral individual or a hybrid between P. dulcis and P. webbii.Abbreviations dNTP Deoxynucleotide triphosphate - CTAB Cetyltrimethylammonium bromide - ISSR Inter-simple sequence repeats - PCR Polymerase chain reaction - RAPD Randomly amplified polymorphic DNA - RASTM Regional Agricultural Services of Trás-os-Montes - TE Tris-EDTA buffer - UPGMA Unweighted pair group method with arithmetical averagesCommunicated by P. Puigdoménech  相似文献   

20.
A new strategy for structural identification of abnormal human hemoglobins is proposed. It is based on micropreparative modification of electrophoretic separation of globins on Cellogel strips with subsequent quantitative isolation of a pure, desalted globin chain, in a form suitable for its subsequent structural investigation. Among the major advantages of the new strategy age possibility to use small blood samples (0.1-0.2 ml), short analysis time, relative simplicity and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号