首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The agricultural soils near a copper smelter in southeast China were found to be highly contaminated with Cu, Pb, Zn, and Cd. Metal migration from the soil to groundwater presents an environmental risk that depends on the physicochemical properties of the contaminated soils. Soil solution samples were obtained using lysimeters from a loam soil with multiple metal pollutions over a period of about 1 yr. A field lysimeter study was also conducted to examine the potential use of (S, S')-ethylenediamine-N, N'-disuccinic acid trisodium salt (EDDSNa3) in chelate-enhanced phytoremedation and to evaluate the leaching of heavy metals. The average heavy metal concentrations in the soil solution (without the addition of EDDS) were high (e.g., 0.15 mg Pb L(-1) at a 50-cm depth) compared to the upper limit for protection of groundwater in China, but varied during the sampling period. Cu concentrations were not correlated with pH or dissolved organic carbon (DOC), but Zn and Cd concentrations were related to soil solution pH. EDDS enhanced metal solubility in the soil, but plant metal uptake by Elsholtzia splendens Nakai did not increase accordingly. There may be an increasing risk of groundwater pollution by Cu and the EDDS enhanced phytoremediation technique needs to be carefully applied to minimize this side effect.  相似文献   

2.
伴矿景天Sedum plumbizincicola是我国发现和报道的镉/锌(Cd/Zn)超积累植物,在土壤Cd污染修复方面已开展实际应用。由于超积累植物伴矿景天在不同类型土壤下的生长能力以及对镉锌的去除效果存在较大差异,因此需引入强化修复技术为植物修复提供辅助作用。作为大型土壤动物,蚯蚓对植物生长的促进作用已有较多研究,但其对伴矿景天生长和重金属吸取效率的影响则鲜有报道,为探究赤子爱胜蚓对不同类型土壤种植下的伴矿景天是否具有强化修复效应,以及不同类型土壤下的强化修复效应差异,设计以下盆栽试验。通过在常湿淋溶土(Perudic Luvisols)、水耕人为土(Stagnic Anthrosols)、湿润雏形土(Udic Cambisols)3种土壤上种植伴矿景天、引入赤子爱胜蚓Eisenia foetida,探究赤子爱胜蚓对伴矿景天生长及Cd/Zn吸收性的影响。选取Cd有效性较高、修复潜力较大的水耕人为土(Stagnic Anthrosols)进行第二季盆栽修复试验。第一季修复结果显示,在酸性的常湿淋溶土中,添加赤子爱胜蚓使伴矿景天地上部生物量较对照处理增加了106%,Cd和Zn吸收量分别提高了72.0%和36.0%,且蚯蚓结合伴矿景天的处理修复后土壤Cd有效性进一步降低,其余两种土壤仅添加蚯蚓无强化修复效应;第二季结果显示,同时添加秸秆和蚯蚓,可强化中性的水耕人为土上种植的伴矿景天生长,增大植物地上部生物量和Cd/Zn吸收量。结果表明,添加蚯蚓可增强伴矿景天在常湿淋溶土中的养分吸收,提高生物量,以此强化其修复效应。在水耕人为土中,外加秸秆可作为蚯蚓强化伴矿景天修复的配套技术。  相似文献   

3.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

4.
A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23–0.28 mg kg?1, almost down to the standard limit (0.2 mg kg?1). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.  相似文献   

5.
有机物料对污染土壤上水稻生长和重金属吸收的影响   总被引:10,自引:0,他引:10  
采用盆栽试验,研究了施用有机碳源、菜籽饼和猪粪对污染土壤上水稻生长和重金属吸收特性的影响.结果表明: 施用菜籽饼和猪粪均能缓解重金属对水稻的毒害作用,促进水稻生长,显著增加地上部生物量和籽粒产量,降低糙米中重金属浓度;而有机碳源抑制水稻生长.与施用化肥相比,施用菜籽饼和猪粪处理的水稻籽粒产量分别增加128.3%和67.9%;施用菜籽饼处理的糙米Cd、Cu和Zn浓度分别降低47.6%、35.2%和21.5%,施用猪粪处理分别降低9.5%、21.2%和9.3%.土壤中DTPA提取态重金属浓度与水稻地上部生物量和重金属积累总量呈显著负相关.  相似文献   

6.
伴矿景天-水稻轮作及磷修复剂对水稻锌镉吸收的影响   总被引:3,自引:0,他引:3  
采用盆栽试验,将锌镉超积累植物伴矿景天与镉低积累水稻中香1号轮作种植于重金属污染土壤,并向土壤添加钙镁磷肥和磷矿粉,研究两种磷修复剂对伴矿景天和镉低积累水稻生长及地上部重金属积累性的影响.盆栽试验结果表明,在轻污染土壤上施用50 g·kg-1磷矿粉时伴矿景天地上部的Zn、Cd吸收量分别达到每盆11.5 和0.79 mg,效果好于施用4 g·kg-1钙镁磷肥处理.在重金属污染土壤上种植伴矿景天使后茬水稻地上部Zn、Cd浓度上升,但钙镁磷肥的施用显著降低了水稻体内的Zn、Cd积累量.种植伴矿景天后添加钙镁磷肥稳定调控剂对土壤中水溶态及NH4OAc提取态Zn、Cd的稳定效果明显优于磷矿粉,且在高污染土壤上效果更佳.田间试验结果显示,施用钙镁磷肥不仅可增加水稻产量,且可一定程度上降低水稻地上部的Zn、Cd吸收量.  相似文献   

7.
Pot and field experiments were conducted to investigate the effects of soil amendments (cow manure, rice straw, zeolite, dicalcium phosphate) on the growth and metal uptake (Cd, Zn) of maize (Zea mays) grown in Cd/Zn contaminated soil. The addition of cow manure and rice straw significantly increased the dry biomass, shoot and root length, and grain yield of maize when compared with the control. In pot study, cow manure, rice straw, and dicalcium phosphate all proved effective in reducing Cd and Zn concentrations in shoots and roots. Cd and Zn concentrations in the grains of maize grown in field study plots with cow manure and dicalcium phosphate amendments to highly contaminated soil (Cd 36.5 mg kg?1 and Zn 1520.8 mg kg?1) conformed to acceptable standards for animal feed. Additionally both cow manure and dicalcium phosphate amendments resulted in the significant decrease of Cd and Zn concentrations in shoots of maize.  相似文献   

8.
植物防御素调控水稻镉积累的新机制   总被引:1,自引:0,他引:1  
黄新元  赵方杰 《植物学报》2018,53(4):451-455
镉是我国农产品的主要重金属污染物之一。随着我国土壤重金属污染问题日益突出, 包括稻米在内的农产品重金属超标时常发生。如何防控重金属在作物可食部位的积累, 在保证农产品安全的同时将农田重金属进行移除修复, 已成为我国农业生产急需解决的问题。最近, 中科院上海生命科学院植物生理生态所龚继明研究组和中国水稻所钱前研究组克隆到1个特异调控镉在水稻(Oryza sativa)叶片中积累的主效QTL基因CAL1CAL1编码1个植物防御素类似蛋白, 通过与镉进行螯合, 将镉从维管束木质部薄壁细胞中分泌出来, 进入木质部参与长距离转运, 从而定向调控镉在水稻叶片等营养器官的积累而不影响籽粒镉的积累。该研究加深了人们对重金属镉在植物体内的转运和再分配机理的认识, 同时也为培育秸秆镉高积累而籽粒镉含量达标的“修复型”水稻品种提供有价值的新基因。研究成果具有重要的理论意义和应用价值。  相似文献   

9.
Zhao B  Shen LB  Cheng MM  Wang SF  Wu LH  Zhou SB  Luo YM 《应用生态学报》2011,22(10):2725-2731
采用黑龙江黑土、河南潮土和浙江水稻土等我国粮食主产区典型土壤开展盆栽试验,研究小麦/伴矿景天间作、水稻轮作模式下Zn、Cd超积累植物伴矿景天对当季小麦和后茬水稻生长及重金属吸收性的影响,探索粮食作物主产区污染土壤边生产边修复技术的可行性.结果表明:麦季间作伴矿景天,土壤硝酸钠提取态Zn、Cd浓度较小麦单作处理显著提高,间作处理下水稻土、潮土与黑土的提取态Zn较单作处理分别提高55%、32%和110%,水稻土与黑土提取态Cd较单作分别提高38%和110%,潮土的提取态Cd与对照处理没有差异.间作处理水稻土、潮土和黑土上小麦地上部重金属浓度是单作处理的1.1~1.9倍.麦季间作伴矿景天对后茬水稻生长及其地上部重金属吸收性无显著影响,虽然后茬水稻糙米中Cd含量仍高于0.2 mg·kg-1的“食品中污染物限量”标准,但种植过伴矿景天处理的水稻糙米重金属与前季单作小麦处理相比呈下降趋势.表明通过伴矿景天/小麦-水稻的间作和轮作种植模式,可吸取修复污染土壤中有害重金属,降低后茬水稻的食物链风险.  相似文献   

10.
A growth chamber pot experiment and a field plot experiment were conducted with the installation of rhizobags to study the effects of repeated phytoextraction by Sedum plumbizincicola on the bioavailability of Cd and Zn in the rhizosphere and bulk soil Repeated phytoextraction gave significantly lower Cd and Zn concentrations in both rhizosphere and bulk soil solutions compared with soil without repeated phytoextraction. The depletion rates of NH40Ac-extractable Zn in rhizosphere soil in each treatment (L-PS, L-NPS, H-PS, and H-NPS) were 59.7, 18.0, 16.3, and 18.6%, respectively. For NH40Ac-extractable Cd, the depletion rates in treatments L-PS, L-NPS, H-PS, and H-NPS were 6.67, 29.4, 40.3, and 41.4%, respectively. Plant shoot biomass decreased in the order H-PS > H-NPS > L-PS > L-NPS, with dry weights of 0.56, 0.42, 1.43, and 1.21 g pot(-1), respectively. Plant Cd uptake increased with increasing aqua-regia extractable metal concentrations. The NH4OAc extraction procedure was satisfactory to predict the bioavailability of Cd and Zn in rhizosphere soil in terms of shoot uptake by S. plumbizincicola with positive correlation coefficients of 0.545 (p < 0.05) and 0.452 (p < 0.05), respectively. The field study results show a slight decrease in water soluble and NH4OAc-extractable metals, a trend similar to that found in the pot experiment.  相似文献   

11.
The search for cheap and environmentally friendly materials is essential for remediation of heavy-metal-contaminated agricultural soils. A pot experiment was undertaken to evaluate the application of rice straw and filamentous fungus Penicillium chrysogenum (P. chrysogenum) on the fractionation of copper (Cu) and cadmium (Cd), soil microbial properties, and Cu and Cd uptake by romaine lettuce (Lactuca sativa) in a contaminated agricultural soil. Rice straw was applied at three rates (0, 7.8, and 11.7 g kg?1 soil), and in combinations with P. chrysogenum (1.0 × 106 spores g?1 soil). It was found that the combined treatment of rice straw and P. chrysogenum significantly decreased the acid-extractable Cu and Cd by 15.4–25.1% and 20.2–27.3%, and increased the oxidizable Cu and Cd by 16.1–18.0% and 72.1–98.4%, respectively. Soil microbial biomass and fresh weight of lettuce were also remarkably enhanced after rice straw plus P. chrysogenum addition. Rice straw combined with P. chrysogenum was more effective in reducing Cu and Cd uptake by lettuce than rice straw alone. The joint application of rice straw and P. chrysogenum remarkably reduced Cu and Cd concentrations in lettuce shoots by 13.6–21.9% and 32.9–41.7%, respectively. These results indicate that the combined application of P. chrysogenum and rice straw is a promising method to alleviate the bioavailability of metals, and to improve soil microbial properties and plant yield in heavy-metal-polluted agricultural soils.  相似文献   

12.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

13.
罗艳  张世熔  徐小逊  贾永霞 《生态学报》2014,34(20):5774-5781
采用盆栽试验研究了可降解螯合剂EDDS和NTA对镉胁迫下籽粒苋(Amaranthus hybridus L.)根系形态及生理生化特征的影响。结果表明:当螯合剂施入10 mg/kg的镉污染土壤后,籽粒苋根系生物量和总长等根系形态指标与对照无显著差异,过氧化物酶(POD)、过氧化氢酶(CAT)活性、谷胱甘肽(GSH)和可溶性蛋白含量显著上升。当螯合剂施入100 mg/kg的镉污染土壤后,籽粒苋根系生物量、总长、表面积、体积及侧根数比对照显著减少了12.30%—23.98%、17.01%—24.90%、41.87%—57.93%、16.46%—32.94%和23.48%—53.35%;EDDS的施入使籽粒苋根系POD、CAT活性、GSH和可溶性蛋白含量显著升高;而NTA施入后,根系中的POD活性比对照降低了4.12%—35.95%,并且CAT活性和可溶性蛋白含量在2 mmol/kg NTA处理下分别显著降低了14.66%—15.79%和26.81%—30.48%;EDDS和NTA施入后,GSH含量比对照显著升高了14.73%—65.65%和28.05%—84.10%。当镉处理浓度分别为10 mg/kg和100 mg/kg时,螯合剂的施入显著增强了籽粒苋根系对镉的吸收,比对照分别增加了40.76%—103.10%和15.03%—49.49%。因此,EDDS和NTA施入镉污染土壤后,通过影响籽粒苋根系形态和生理生化过程以响应重金属镉的胁迫。  相似文献   

14.
The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.  相似文献   

15.
Absorption ability for heavy metals varies among plant species. This study is to evaluate the absorption characteristics of different plant species and planting patterns for heavy metals. Five plant species (tomato, maize, greengrocery, cabbage, and Japan clover herb) were cultivated in monoculture and in intercropping in soil contaminated with heavy metals (Cd, Pb, Cr, Cu, and Fe), to determine the absorption status. Tomato absorbs greater amounts of heavy metals (especially Cd). Furthermore, accumulation of heavy metals increased when tomato was intercropped with other plant species. Maize accumulates greater amounts of Cr, Cu, and Fe. The heavy metal concentrations were reduced when maize was intercropped. Cd and Pb accumulated more in roots of Japan Clover Herb, and the levels of all five heavy metals decreased when intercropped. Tomato intercropping is a feasible method for phytoremediation of heavy metal-contaminated soil, and maize intercropping is feasible for obtaining safe harvest which can be eaten securely.  相似文献   

16.
Abstract

In the framework of a phytoremediation project in the Apulia region (Italy) a field experiment was carried out in multi-metal contaminated soils. The accumulation and distribution of metals in different plant parts of durum wheat and barley were studied. Further, the application of Bacillus licheniformis strain BLMB1 to soil was evaluated as a means to enhance metal accumulation in plants. The translocation and the bioconcentration factors indicated that wheat and barley do not act as metal accumulators in the field conditions tested, thus phytoextraction by these species would not be recommended as a soil remediation alternative. Application of B. licheniformis improved the accumulation of all metals in roots of wheat and barley, and increased Cd, Cr, and Pb contents in the shoots of barley. Low health risk for humans and animals was evaluated to exist if straw and grain from both cereal crops grown in these contaminated sites are consumed.  相似文献   

17.
Two pot experiments were conducted to investigate the time course effects of the (S, S)-N, N'-ethylenediamine disuccinic acid (EDDS) addition to contaminated soil on the uptake of Cu and Zn by the Cu accumulator Elsholtzia splendens and on plant Cu and Zn concentrations at different growth stages. EDDS increased the amounts of Cu and Zn soluble in the soil, taken up by plants, concentrated in the xylem sap, and translocated from roots to stems and leaves. The increase in soil-soluble metals, especially Cu, resulted in a corresponding increase in metal concentrations in the xylem sap and leaves. The addition of EDDS to the soil increased plant Cu and Zn concentrations, especially in the leaves, and changed the proportions of Cu and Zn taken up by different plant parts. The proportions of Cu and Zn taken up by the roots were higher than by the leaves of control plants, but EDDS-treated plants showed the opposite trend. EDDS exerted greater effects at the end of the vegetative growth stage than at the start of the flowering or reproductive stages.  相似文献   

18.
Using pot experiments, the effect of the application of the biodegradable chelating agent S,S-ethylenediaminedisuccinic acid (EDDS) in hot solutions at 90 degrees C on the uptake of Cu, Pb, Zn, and Cd by corn (Zea mays L. cv. Nongda No. 108) and beans (P vulgaris L. white bean), and the potential leaching of metals from soil, were studied. When EDDS was applied as a hot solution at the rate of 1 mmol kg(-1), the concentrations and total phytoextraction of metals in plant shoots exceeded or approximated those in the shoots of plants treated with normal EDDS at the rate of 5 mmol kg(-1). On the other hand, the leaching of Cu, Pb, Zn, and Cd after the application of the hot EDDS solution at the rate of 1 mmol kg(-1) was reduced by 46%, 21%, 57%, and 35% in comparison with that from the application of normal EDDS at 5 mmol kg(-1), respectively. For treatment with 1 mmol kg(-1) of EDDS, the leached metals decreased to the levels of the control group (that without EDDS amendment) 14 d after the application of EDDS. The soil amendment with biodegradable EDDS in hot solutions may provide a good alternative to chelate-enhanced phytoextraction in enhancing metal uptake by plants and limiting metals from leaching out of the soil.  相似文献   

19.
强还原过程对设施菜地土壤重金属形态转化的影响   总被引:1,自引:0,他引:1  
设施菜地由于污水灌溉、粪肥施用等导致重金属污染.本文通过土柱淹水同时添加玉米秸秆培养和后期通水淋洗,研究强还原法对设施土壤重金属(Cd、Cu、Pb和Zn)形态转化的影响.结果表明: 强还原处理使土壤pH显著降低,玉米秸秆处理变化更显著;土壤氧化还原电位(Eh)迅速下降至-280 mV左右.玉米秸秆处理可以促进土壤中Cd、Cu、Pb和Zn活化,第9天土壤中有机物及硫化物结合态和残渣态Cd、Cu、Pb和Zn含量比重下降;至15 d培养结束,土壤中4种重金属含量较对照分别减少18.1%、19.0%、16.1%和15.7%.玉米秸秆处理可以增加土壤中Cd和Zn的溶出量,但是Cu的溶出量减少;胶体结合态Cd和Pb含量较对照增加、Cu较对照显著减少、Zn没有显著变化.强还原可以引起设施土壤重金属活化,提高蔬菜积累重金属的风险,而且其随土壤水分的运移可能导致水体的污染.  相似文献   

20.
Metals contaminate the soil when present in high concentrations causing soil and ultimately environmental pollution. “Phytoremediation” is the use of plants to remove pollutants from contaminated environments. Plants tightly regulate their internal metal concentrations in a process called “metal homeostasis”. Some species have evolved extreme tolerance and accumulation of Zn, Cd and Ni as a way to adapt to exposure to these metals. Such traits are beneficial for phytoremediation, however, most natural metal hyperaccumulator species are not adapted to agriculture and have low yields. A wealth of knowledge has been generated regarding metal homeostasis in plants, including hyperaccumulators, which can be used in phytoremediation of Zn, Cd and Ni. In this review, we describe the current state of Zn, Cd and Ni physiology in plants and the underlying molecular mechanisms. The ways to efficiently utilize this information in designing high biomass metal accumulator plants are discussed. The potential and application of genetic modification has extended our understanding about the mechanisms in plants dealing with the metal environment and has paved the way to achieve the goal of understanding metal physiology and to apply the knowledge for the containment and clean up of metal contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号