首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thoracic mechanoreceptors of the wings and their central projections in the noctuid moth Heliothis zea (Lepidoptera: Noctuidae) were investigated using cobalt chloride infiltration methods. The different mechanoreceptors, tegula, campaniform sensilla, and chordotonal organ were identified as being present in the wing bases. The forewing and hindwing bases were innervated by two large nerve trunks (IIN1 and IIIN1, respectively). Terminal projections for both wing bases included massive regions within the fused meso-metathoracic and prothoracic ganglia, as well as direct projections to the suboesophageal ganglia. The terminal fields of IIIN1 were exclusively ipsilateral, whereas those of IIN1 also were contralateral. The relationship of these sensory mechanoreceptors to the neural basis of evasive flight behaviours is discussed.  相似文献   

2.
Winter geometrid moths exhibit sexual dimorphism in wing length and female‐specific flightlessness. Female‐specific flightlessness in insects is an interesting phenomenon in terms of sexual dimorphism and reproductive biology. In the winter geometrid moth, Protalcis concinnata (Wileman), adult females have short wings and adult males have fully developed wings. Although the developmental process for wing reduction in Lepidoptera is well studied, little is known about the morphology and the developmental pattern of short‐winged flightless morphs in Lepidoptera. To clarify the precise mechanisms and developmental processes that produce short‐winged morphs, we performed morphological and histological investigations of adult and pupal wing development in the winter geometrid moth P. concinnata. Our findings showed that (a) wing development in both sexes is similar until larval‐pupal metamorphosis, (b) the shape of the sexually dimorphic wings is determined by the position of the bordering lacuna (BL), (c) the BL is positioned farther inward in females than in males, and (d) after the short pupal diapause period, the female pupal wing epithelium degenerates to approximately two‐thirds its original size due to cell death. We propose that this developmental pattern is a previously unrecognized process among flightless Lepidoptera.  相似文献   

3.
The wings of the pteropod mollusc Clione limacina provide forward propulsive force through flapping movements in which the wings bend throughout their length in both dorsal and ventral directions. The musculature of the wings includes oblique, striated muscle bundles that generate the swimming movements of the wings, longitudinal and transverse (smooth) muscle bundles that collapse the wings and pull them into the body during a wing withdrawal response, and dorsoventral muscles that control the thickness of the wings. All muscles act against a hydrostatic skeleton that forms a central hemocoelic space within the wings. Of these muscle types, all have been thoroughly described and studied except the dorsoventral muscles. The fortuitous discovery that the dorsoventral musculature can be intensely labeled with an antibody against the vertebrate hyperpolarization‐activated cation channel (HCN2) provided the opportunity to describe the organization of the dorsoventral musculature in detail. In addition, electrical recordings and microelectrode dye injections supported the immunohistochemical data, and provided preliminary data on the activity of the muscle fibers. The organization and activity of the dorsoventral musculature suggests it may be involved in regulation of wing stiffness during the change from slow to fast swimming.  相似文献   

4.
Scanning electron microscopy was used to investigate the morphology of intact imaginal wing discs of third-instar larvae of Drosophila melanogaster. The disc stalk, nerve and tracheal entries and the surface ultrastructure of the columnar cells, the peripodial membrane cells, and the adepithelial cells are described. The behavior of various fragments of the wing disc during culture in vivo was also studied. After injuring a wing disc by cuts with a tungsten needle, during the first day of culture the epithelium curls and the wound surface contracts. Subsequent closure of the wound in 34 and 14 sectors, in fragments generated by straight cuts and in central squares, leads to the confrontations of cells from formerly separate positions, as was proposed in connection with the polar coordinate model of French, Bryant, and Bryant [(1976). Pattern regulation in epimorphic fields. Science193, 969–981]. Wound healing comprises three steps: (1) Cell debris is removed; (2) occasional cell processes span the wound; (3) all cells at the wound edge contact cells on the opposite side. After 2–3 days, a continuous epithelium is re-established. The tissue distortion may lead to transient contacts of the columnar epithelium with the peripodial membrane and with itself. The latter can explain the occasional duplications of structures which, according to the fate map, arise from near the wound edge, and which have been previously reported from cultured imaginal disc fragments. The tissue movements appear to be due to the contractile properties of individual cells.  相似文献   

5.
Ikuko Tanaka 《Palaeontology》2017,60(2):187-197
The characteristics of avian wings that evolved for flying appear to show a distinct relationship to the shape of the pes and walking abilities as reflected in footprints. Wing area, wing span and body weight data of modern birds were collected and analysed in order to quantify the possible correlation, which was previously only inferred from empirical data. Discriminant analysis demonstrated that avian wings can be divided into three habitat groups, in a similar way to footprints. Multiple regression analyses revealed that the avian wing loading and aspect ratio were correlated with the parameters of footprint shape and can be expressed by a simple equation. The results may reflect the adaptation of avian locomotion to habitat. The relationships between wing area and wing span, and between wing area and footprint area, which are apparent in modern avians, were derived and used to estimate wing area and wing span from the footprints of extinct Cretaceous avian taxa. The estimated values of body weight, wing span and wing area suggest that the trackmakers of Archaeornithipus meijidei, Hwangsanipes choughi and Yacoraitichnus avis had bodies similar to herons (or cranes), large sandpipers (or small sea birds) and medium‐sized gull‐like birds, respectively.  相似文献   

6.
Niitsu S  Lobbia S  Kamito T 《Tissue & cell》2011,43(3):143-150
Female adults of the bagworm moth, Eumeta variegata, lack wings completely, whereas male adults of this species have functional wings. We previously found that ecdysteroid induces apoptotic events in the female wing rudiment of E. variegata in vitro, whereas the male wing discs cultured with 20-hydroxyecdysone (20E) underwent apolysis and then cell differentiation. To investigate whether juvenile hormone (JH) in involved in sex-specific cellular response to ecdysteroid during wing development between sexes of E. variegata, we tested the effects of juvenile hormone analog (JHA), methoprene, and 20E on wing disc morphogenesis between sexes in vitro. Using transmission electron microscopy (TEM), we found that both higher concentration of JHA (5 μg/ml) and 20E (1 μg/ml) addition induced cell death (apoptosis) in the male wing discs but not induced cell death in the female wing rudiments in vitro in E. variegata. These culture experiments clearly detected the differential responses of wing discs to JHA under ecdysteroid treatment between sexes. We propose two important hypotheses: (1) JH is not significantly involved in the suppression of the female wing rudiment morphogenesis under 20E treatment, (2) female wing rudiment has lost the ability for cell proliferation in response to the stimulus of 20E.  相似文献   

7.
8.
Abstract Newly‐mated Solenopsis invicta flight queens cast (shed) their wings within 24 h. An examination of their flight muscle cells reveals numerous apoptotic (terminal deoxynucleotidyl transferase mediated dUTP nick end labelling positive) nuclei. By contrast, flight muscle cells of mature alate virgin (MAV) females removed 24 h earlier from a managed laboratory colony exhibit neither wing casting nor the presence of apoptotic nuclei. Using MAV‐females, the initiation of flight muscle apoptosis and wing casting is compared with artificial mating using seminal fluid with sperm, seminal fluid with no sperm, saline as a negative control, the mating flight as simulated in the laboratory, elevated CO2 exposure, application of methoprene (a juvenile hormone analogue), or injection of 20‐hydroxyecdysone. Numerous apoptotic nuclei are revealed in the flight muscle cells of mated dealate females 24 h after a natural mating flight but not in MAV‐females controls. Only artificial mating of MAV‐females reveals a similar pattern of apoptotic nuclei flight muscle 24 h after insemination. None of the other factors tested induces flight muscle cell apoptosis in MAV‐females. Methoprene dissolved in methyl ethyl ketone, at a concentration of 0.44 ng per μL per ant, stimulates 90% of MAV‐females to shed their wings within 24 h, as opposed to 10% or less wing shedding for the methyl ethyl ketone control and all other treatments.  相似文献   

9.
A new recessive, sex-linked, nonlethal in the homozygote, wing mutation in Drosophila virilis was studied using a hybridological assay, light microscopy, and transmission electron microscopy. The mutants have abnormally small wings; the phenotype is attributed to a cell-autonomous reduction in the size of the epidermal cells of the differentiating wing. The phenotype is also characterized by abnormally oriented wing hairs, wavy wing edge, temperature sensitivity, and some abnormalities in the wing veins.  相似文献   

10.
Programmed cell death is an integral and ubiquitous phenomenon of development that is responsible for the reduction of wing size in female moths of Orgyia leucostigma (Lymantriidae). Throughout larval and pupal life, cells of the wing epithelium proliferate and interact to form normal imaginal discs and pupal wings in both sexes. But at the onset of adult development, most cells in female O. leucostigma wings degenerate over a brief, 2-day period. Lysosomes and autophagic vacuoles appear in cells of the wing epithelium shortly after it retracts from the pupal cuticle. Hemocytes actively participate in removing the resulting cellular debris. By contrast, epithelial cells in wings of developing adult males of O. leucostigma do not undergo massive cell death. Wing epithelium of female pupae transferred to male pupal hosts behaves autonomously in this foreign environment. By pupation, cells of the female wing apparently are committed to self-destruct even in a male pupal environment. Normal interactions among epithelial cells within the plane of a wing monolayer as well as between the upper and lower monolayers of the wing are disrupted in female O. leucostigma by massive cell degeneration. Despite this disruption, the remaining cells of the wing contribute to the formation of a diminutive, but reasonably proportioned, adult wing with scales and veins.  相似文献   

11.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   

12.
13.
MicroRNAs (miRNAs) have been implicated in cell‐cycle regulation and in some cases shown to have a role in tissue growth control. Depletion of miRNAs was found to have an effect on tissue growth rates in the wing primordium of Drosophila, a highly proliferative epithelium. Dicer‐1 (Dcr‐1) is a double‐stranded RNAseIII essential for miRNA biogenesis. Adult cells lacking dcr‐1, or with reduced dcr‐1 activity, were smaller than normal cells and gave rise to smaller wings. dcr‐1 mutant cells showed evidence of being susceptible to competition by faster growing cells in vivo and the miRNA machinery was shown to promote G1–S transition. We present evidence that Dcr‐1 acts by regulating the TRIM‐NHL protein Mei‐P26, which in turn regulates dMyc protein levels. Mei‐P26 is a direct target of miRNAs, including the growth‐promoting bantam miRNA. Thus, regulation of tissue growth by the miRNA pathway involves a double repression mechanism to control dMyc protein levels in a highly proliferative and growing epithelium.  相似文献   

14.
Male wing colors and wing scale morphology were examined for three species of lycaenid butterflies: Chrysozephyrus ataxus, Favonius cognatus and F. jezoensis. Measurement of spectral reflectance on the wing surface with a spectrophotometer revealed species‐specific reflection spectra, with one or two peaks in the ultraviolet and/or green ranges. Observations of wing scales using an optical microscope revealed that light was reflected from the inter‐ridge regions, where transmission electron microscopy revealed a multilayer structure. Based on the multilayer dimensions obtained, three models were devised and compared to explain the measured reflectance spectrum. The results showed that the best fit is a model in which thicknesses of thin films of the multilayer system are not constant and air spaces between cuticle layers are more or less packed with cuticle spacers. This suggests that the specific wing colors of the species examined are produced by the species‐specific arrangement of the multilayer structure of wing scales.  相似文献   

15.
It has long been noted that high temperature produces great variation in wing forms of the vestigial mutant of Drosophila. Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the presumptive wing blade or costal region of the wing disc. The vestigial gene (vg) and the interaction of Vg protein with other gene products are well understood. With this biochemical knowledge, reinvestigations of the high-temperature-induced vestigial wings and the elucidation of the molecular mechanism underlying the large-scale variation of the wing forms may provide insight into further understanding of development of the wing of Drosophila. As a first step of such explorations, I examined high-temperature-induced (29°C) vestigial wings. In the first part of this paper, I provide evidences to show that the proximal and distal costae in these wings exhibit regular and continuous variation, which suggests different developmental processes for the proximal and distal costal sections. Judging by the costae presenting in the anterior wing margin, I propose that the proximal and distal costal sections are independent growth units. The genes that regulate formation of the distal costal section also strongly affect proliferation of cells nearby; however, the same phenomenon has not been found in the proximal costal section. The distal costal section seems to be an extension of the radius vein. vestigial, one of the most intensely researched temperature-sensitive mutations, is a good candidate for the study of marginal vein formation. In the second part of the paper, I regroup the wing forms of these wings, chiefly by comparison of venation among these wings, and try to elucidate the variation of the wing forms according to the results of previous work and the conclusions reached in the first part of this paper, and provide clues for further researches.  相似文献   

16.
Wings are an important flight organ of insects and their morphogenesis depends on a series of cell-to-cell and cell-to-extracellular matrix interactions. Integrin as a transmembrane protein receptor mediates cell-to-cell adhesion, cell-to-extracellular matrix interactions and signal transduction. In the present study, we characterized an integrin gene that encodes integrinβ-PS protein in Locusta migratoria. LmIntegrinβ-PS is highly expressed in the wing pads and the middle stages of 5th instar nymphs. Immunohistochemical analysis revealed that the LmIntegrinβ-PS protein was localized at the cell base of the two layers of wings. After suppression of LmIntegrinβ-PS by RNA interference, the wing pads or wings were unable to form normally, with a blister wing appearance during nymph to nymph transition and nymph to adult transition. We further found that the dorsal and ventral epidermis of the wings after dsLmIntegrinβ-PS injection were improperly connected and formed huge cavities revealed by hematoxylin and eosin staining. Furthermore, the morphology and structure of the wing cuticle was significantly disturbed which affected the stable arrangement and attachments of the wing epidermis. Moreover, the expression of related cell adhesion genes was significantly decreased in LmIntegrinβ-PS-suppressed L. migratoria, suggesting that LmIntegrinβ-PS is required for the morphogenesis and development of wings during molting by stabilizing cell adhesion and maintaining the cytoskeleton of these cells.  相似文献   

17.
To elucidate the mechanisms whereby genes and environment influence wing size, we investigated the effects of various rearing temperatures and larval crowding conditions on the wings of the mutant miniature and wild-type fruit flies. In adults we monitored wing size, cell number, wing thickness, cell density; in larval imaginal discs we looked for cell death. Cell density was inversely proportional to wing size. Of particular interest was the finding that smaller wings tend to be thicker. Electron microscope studies showed that the miniature wing layers are grossly abnormal. We hypothesize that these abnormalities are due to abnormal cell flattening of the wing epithelial cells, and we conclude that gene and environmental effects on cell flattening may be an important component in determining cell density and hence organ size.  相似文献   

18.
The rudimentary wing phenotype was examined in detail, using six different alleles of rudimentary, and a number of points about the genesis of the r phenotype were made. (1) All of the r alleles in which the wings are defective produce wings in which the area of individual hair cells is reduced. The more severely affected the allele, the greater is the reduction in wing cell area. This reduction in area is probably uniform throughout the wing rather than localized to specific wing regions. (2) The total number of cells per wing is also greatly reduced in phenotypically r wings. As with cell area, the more severely affected the allele, the greater the reduction in cell number. However, the reduction in cell number is not uniform throughout the wing. In the less severely affected alleles, the cell number reduction is much greater in those regions of the wing which are drastically altered in shape (truncated), while those wing regions which show only slight size reductions but no overall shape changes have near normal numbers of cells. In the most deformed wings, there is a reduction in cell number throughout the wing, but again those regions with are severely truncated are the most drastically reduced in cell number. Measurements of the amount of chitin per wing indicated that the three most severely affected alleles had as much or more chitin than the wild type. It is suggested that overproduction of chitin in these alleles prevents normal expansion of the wing cells, thus increasing the severity of the wing defect. Finally, the validity and limitations of a quantitative measure of the r phenotype were defined. This measure was utilized to demonstrate a clear-cut effect of nutrition on the expression of the r phenotype.  相似文献   

19.
In migratory bird species, juveniles normally have shorter and more rounded wings than adults. The causes of this age‐specific difference in wing morphology, however, are largely unknown. Here, we used longitudinal data collected over 3 years from a Pied Flycatcher Ficedula hypoleuca population to assess whether age‐related differences in wing morphology are a consequence of ontogenetic changes or of selection favouring birds with longer and more pointed wings. Our study provides evidence of ontogenetic changes in wing length and shape, whereby birds grow longer and more pointed wings as they grow older. Age‐dependent variation is likely to be adaptive and may partly explain age differences in spring migration phenology and breeding success.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号