首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The haloarchaeon Haloferax mediterranei is able to assimilate nitrate or nitrite using the assimilatory nitrate pathway. An assimilatory nitrate reductase (Nas) and an assimilatory nitrite reductase (NiR) catalyze the first and second reactions, respectively. The genes involved in this process are transcribed as two messengers, one polycistronic (nasABC; nasA encodes Nas) and one monocistronic (nasD; codes for NiR). Here we report the Hfx mediterranei growth as well as the Nas and NiR activities in presence of high nitrate, nitrite and salt concentrations, using different approaches such as physiological experiments and enzymatic activities assays. The nasA and nasD expression profiles are also analysed by real-time quantitative PCR. The results presented reveal that the assimilatory nitrate/nitrite pathway in Hfx mediterranei takes place even if the salt concentration is higher than those usually present in the environments where this microorganism inhabits. This haloarchaeon grows in presence of 2 M nitrate or 50 mM nitrite, which are the highest nitrate and nitrite concentrations described from a prokaryotic microorganism. Therefore, it could be attractive for bioremediation applications in sewage plants where high salt, nitrate and nitrite concentrations are detected in wastewaters and brines.  相似文献   

2.
Reassessment of the in vivo Assay for Nitrate Reductase in Leaves   总被引:1,自引:0,他引:1  
The in vivo assay procedure for nitrate reductase and its dependence on the concentration of nitrate and other ions were examined. It was found that high ion concentrations led to an increased release of nitrite to the reaction media which could be interpreted as a stimulated nitrate reductase activity. This phenomenon is not an osmotic effect, since equivalent concentrations of mannitol did not lead to identical results. The effect of ions on the enhanced nitrite production was attributed to changes in cell membrane permeability rather than to a supply of substrate. This conclusion is based on several findings: (a) in in vitro assays, the rate of nitrite production was not affected by ion concentrations: (b) the stimulation of nitrite production was obtained by various ions and not only by nitrate; (c) pretreatment of alfalfa leaves with nitrate did not increase the NO2? release rate to the external solution; and (d) nitrate and nitrite export from leaf discs to the solution was stimulated even in discs which were enzymatically inactive. Calcium ions in the presence of KNO3 inhibited the enhanced nitrite production, probably due to alteration of membrane stability. The effect of ions on the rate of nitrite production was reversible and the high rate of nitrite production was reduced to the control rate when discs were transferred to a solution of low concentration.  相似文献   

3.
The denitrifying ability of thirteen strains of Rhizobium meliloti was tested. Most of the strains were able to reduce nitrate to nitrous oxide or dinitrogen. However, they failed to use nitrate as electron acceptor for ATP generation or growth at low oxygen tensions. Under micro-aerobic conditions, free-living cells of R. meliloti 102-F-51 strain exhibited a constitutive nitrate reductase activity independent of the presence of nitrate. On the other hand, nitrite reductase activity was dependent not only on low levels of oxygen but also on the presence of a high nitrate concentration in the medium. Denitrification activity proceeded immediately once a threshold level of nitrite was accumulated in the medium or in cells incubated with 1mM nitrite. However, a lag period was required when cells were incubated with nitrate.  相似文献   

4.
Measurement of nitrite and nitrate, the stable oxidation products of nitric oxide (NO), provides a useful tool to study NO synthesis in vivo and in cell cultures. A simple and rapid fluorometric HPLC method was developed for determination of nitrite through its derivatization with 2,3-diaminonaphthalene (DAN). Nitrite, in standard solution, cell culture medium, or biological samples, readily reacted with DAN under acidic conditions to yield the highly fluorescent 2,3-naphthotriazole (NAT). For analysis of nitrate, it was converted to nitrite by nitrate reductase, followed by the derivatization of nitrite with DAN to form NAT. NAT was separated on a 5-μm reversed-phase C8 column (150×4.6 mm, I.D.) guarded by a 40-μm reversed-phase C18 column (50×4.6 mm, I.D.), and eluted with 15 mM sodium phosphate buffer (pH 7.5) containing 50% methanol (flow-rate, 1.3 ml/min). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. Mean retention time for NAT was 4.4 min. The fluorescence intensity of NAT was linear with nitrite or nitrate concentrations ranging from 12.5 to 2000 nM in water, cell culture media, plasma and urine. The detection limit for nitrite and nitrate was 10 pmol/ml. Because NAT is well separated from DAN and other fluorescent components present in biological samples, our HPLC method offers the advantages of high sensitivity and specificity as well as easy automation for quantifying picomole levels of nitrite and nitrate in cell culture medium and biological samples.  相似文献   

5.
Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia coli narK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicum narG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.  相似文献   

6.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

7.
Results of in vitro and in situ experiments on nitrate disappearance from water-sediment systems in the Camargue are described.In the in vitro experiments two factors were studied: temperature and organic matter. After a first addition of KNO3 to these sediments, the concentration of organic matter exerted a strong influence on the disappearance rate of nitrate at 25 °C and 15 °C but not at 2 °C. After a second addition of nitrate at 25 °C and 15 °C the denitrification rate increased by approximately 10%, probably because the activity of the bacterial population had increased.Experiments in situ in freshwater temporary marshes showed that nitrate disappeared at approximately twice the rate at similar temperature in vitro.After the first addition of nitrate in the in vitro experiments the concentration of nitrite in the water above the sediment reached about 10% of the concentration of total dissolved inorganic nitrogen at 2 °C and 15 °C. These high concentrations were not found after the first addition at 25 °C or after the second addition of nitrate at 25 °C and 15 °C. In the in situ experiments, however, high concentrations of nitrite were found.  相似文献   

8.
The influence of different concentration ranges (0–500 mg/L) of ammonium, nitrate and nitrite presence in the wastewater, on the performance of the pure culture of phosphate-accumulating bacterium Acinetobacter junii in the anaerobic and aerobic conditions, was investigated. A. junii was able to use ammonium and nitrate salts as the source of nitrogen, unlike in the case of nitrite salt. Comparing to the control reactors with the peptone and yeast extract as the sources of nitrogen, at the lowest tested concentration of ammonium and nitrate the performance of the system was inhibited due to the nitrogen deficit in the wastewater, while at the highest concentration it was positively influenced. Nitrite in all concentrations detrimentally affected the phosphate release and uptake rates, chemical oxygen demand uptake rates, nitrogen uptake rates, as well as multiplication of A. junii. The higher the nitrite concentration, the more pronounced was the effect. At the highest nitrite concentration tested a complete failure of the system was observed.  相似文献   

9.
A gram-positive bacterium, identified as Corynebacterium K37, was isolated from the waste effluent of a dairy farm. The bacterium thrived and expressed nitrate-reducing activity at nitrate concentrations of up to 2 M, and reduced nitrate concentration from 0.4 M to 11.4 mM and also from 0.4 M to 23.4 mM in aerobic and anaerobic fed-batch cultures, respectively. Cells of K37 were able to utilize a variety of carbon sources for nitrate reduction with little or no accumulation of nitrite. In aerobic cultures, the residual nitrite was minimal and it was completely reduced after prolonged incubation. Growth on acetate or pyruvate in anaerobic cultures resulted in lower nitrite reductase activities and concomitant higher residual nitrite concentrations than did growth on ethanol or glucose, suggesting that diminished electron availability was a factor in the accumulation of residual nitrite. The bacterium also survived in 2 M concentrations of NaCl, KCl, and CaCl2. Corynebacterium sp. K37 may be useful in bioremediation of high nitrate pollution in contaminated soils and water.  相似文献   

10.
11.
The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3 -, NO2 - or NH4 + as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils.  相似文献   

12.
Fifteen nitrate assimilation-deficient mutants of the euryhaline green alga, Dunaliella tertiolecta Butcher were selected by their chlorate resistance. Ten mutants, unable to grow on NO3? but able to grow on NO2?, had no detectable nitrate reductase activity. Five mutants, unable to grow on either NO3? or NO2?, had depressed levels of both nitrate and nitrite reductase. A method for assaying methyl viologen-nitrate reductase in the presence of nitrite reductase is described.  相似文献   

13.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

14.
【背景】异于同型产乙酸菌通常利用Wood-Ljungdahl途径将2分子CO2还原为1分子乙酰辅酶A,Clostridium bovifaecis缺失Wood-Ljungdahl途径甲基支路第1步将CO2还原为甲酸的甲酸脱氢酶,需甲酸存在时将1分子甲酸和1分子CO2还原为乙酰辅酶A发生葡萄糖的同型产乙酸型发酵。已有报道显示,硝酸盐也可作为同型产乙酸菌的电子受体,而且对不同同型产乙酸菌的代谢影响有所不同,然而硝酸盐对这种独特的甲酸脱氢酶缺失型Wood-Ljungdahl途径固碳的影响尚不清楚。【目的】探究硝酸盐对C.bovifaecis甲酸脱氢酶缺失型Wood-Ljungdahl途径固碳的影响。【方法】硝酸盐浓度分别为10 mmol/L和30 mmol/L时,以未添加硝酸盐为对照实验,研究C.bovifaecis在葡萄糖+甲酸+CO2为基质条件下的细菌生长、底物消耗和产物生成情况。【结果】10 mmol/L和30 mmol/L硝酸盐存在时,主要产物乙醇浓度分别为5.80 mmol/L和1.66 mmo...  相似文献   

15.
研究水体环境因素(温度、光照和pH)、小分子有机碳和有机氮化合物对一株具有高效脱氮潜力的沼泽红假单胞菌(Rhodopseudomonas palustris)CQV97在无机三态氮共存体系中脱除无机三态氮的影响规律。结果显示,该菌株在20~40℃,500~5 000lux,pH 6.0~9.0环境条件下,能够脱除高浓度无机三态氮(其中亚硝氮不低于40mg·L-1),表明该菌株具有较强的适应复杂环境的能力;以乙酸钠/乙醇为唯一碳源时,该菌株能有效地去除无机三态氮,而以葡萄糖为唯一碳源时,能有效去除硝氮,但不能去除氨氮,亚硝氮明显积累,表明环境中小分子有机碳源影响菌体对无机三态氮的去除能力;体系中添加高浓度(120mg·L-1)蛋白胨或尿素时,由于有机氮降解的释氨作用,菌体对氨氮的去除能力受到明显抑制,氨氮积累明显,13d时氨氮去除率仅分别为16%(蛋白胨)和6%(尿素),但硝氮和亚硝氮的去除能力并没有受到明显影响。异位处理实际水体结果表明,菌株可使水体中氨氮含量明显降低、硝氮和亚硝氮被完全去除。综上,沼泽红假单胞菌CQV97菌株环境适应能力强,具有高效脱除水体无机三态氮的应用潜力,这为进一步开发高效脱氮微生物制剂及其合理使用奠定了基础。  相似文献   

16.
In a batch culture experiment the microaerophilic Campylobacter-like bacterium “Spirillum” 5175 derived its energy for growth from the reduction of nitrate to nitrite and nitrite to ammonia. Hereby, formate served as electron donor, acetate as carbon source, and l-cysteine as sulfur source. Nitrite was quantitatively accumulated in the medium during the reduction of nitrate; reduction of nitrite began only after nitrate was exhausted from the medium. The molar growth yield per mol formate consumed, Ym, was 2.4g/mol for the reduction of nitrate to nitrite and 2.0 g/mol for the conversion of nitrite to ammonia. The gain of ATP per mol of oxidized formate was 20% higher for the reduction of nitrate to nitrite, compared to the reduction of nitrite to ammonia. With succinate as carbon source and nitrite as electron acceptor, Ym was 3.2g/mol formate, i.e. 60% higher than with acetate as carbon source. No significant amount of nitrous oxide or dinitrogen was produced during growth with nitrate or nitrite both in the presence or absence of acetylene. No growth on nitrous oxide was found. The hexaheme c nitrite reductase of “Spirillum” 5175 was an inducible enzyme. It was present in cells cultivated with nitrate or nitrite as electron acceptor. It was absent in cells grown with fumarate, but appeared in high concentration in “Spirillum” 5175 grown on elemental sulfur. Furthermore, the dissimilatory enzymes nitrate reductase and hexaheme c nitrite reductase were localized in the periplasmic part of the cytoplasmic membrane.  相似文献   

17.
Previous studies have reported increased serum concentrations of nitrite/nitrate – the degradation products of nitric oxide – in Plasmodium vivax malaria and uncomplicated Plasmodium falciparum malaria. In all these studies, however, nitrite/nitrate has been measured spectrometrically using Griess reagent which carries major disadvantages in the determination of serum nitrite/nitrate. The method does not allow an exact differentiation of nitrite and biogenic amines that are physiologically present in plasma. In the present study we introduce high-performance liquid chromatography as a new, accurate and cost effective method for determination of serum nitrite/nitrate levels. Significantly increased nitrate concentrations were found in malaria patients and serum values remained above normal levels for at least 21 days. It could be shown that our HPLC method is a sensitive and cost-effective method for direct determination of nitrite/nitrate in serum samples, which is not influenced by the presence of biogenic amines.  相似文献   

18.
Up to 1 mM nitrite was excreted by Synechocystis strain 6803 cells growing under mixotrophic or photoheterotrophic conditions. This excretion is not due to a lower ratio of nitrite and nitrate reductase activities in the presence of glucose but seems to be related to a shortage of reduced ferredoxin, their electron donor, as a result of a decrease in noncyclic photosynthetic flow observed under these circumstances. Because about 60% of the reduced nitrate is excreted, the potential utilization of cyanobacteria for removal of nitrate from contaminated waters containing high concentrations of organic compounds is questioned.  相似文献   

19.
20.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号