首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30?minutes and, finally, dyed with weld at 75, 85, and 95°C for 30, 45, and 60?minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75°C for 60?min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.  相似文献   

2.
Liposomes are lipid vesicles that are composed of amphiphile molecules and can carry hydrophobic and hydrophilic materials. In this research work liposomes used as carrier for transfer of dye molecules into wool fibers. The preparation and production of multilamellar liposomes (MLV) from Soya lecithin were carried out and the behavior of liposomes at different temperature was studied. The effect of different concentration of liposomes in the dye exhaustion profile of two dyes (Namely, Irgalan Blue FBL and Lanaset Blue 2R) at two different temperatures of 85°C and 95°C on the wool fabric was investigated. The results showed that presence of liposomes in the dye-bath helps to increase the dye absorption on the wool fabric before 80°C. Dyeing at higher temperature and longer time leads to a decrease in the final exhaustion along with increase in the liposomes concentration. Liposomes at high temperature converted to the disperse phospholipids unimers that may deposited on the fabric surface and may produce a hydrophobic barrier against absorption of dye. The presence of 1% o.w.f. (on weight of fabric) of liposomes at 85°C improved the dye exhaustion of Irgalan Blue FBL on the wool fabric. The wash fastness properties of samples which dyed in the dye-bath containing liposomes also improved.  相似文献   

3.
Novel naphthalimide–poly(amidoamine) dendrimer fluorescent dyes were synthesized, and their structures were identified and confirmed using different characterization methods such as Fourier transform infrared, 1H NMR, 13C NMR, differential scanning calorimetry, elemental analysis and UV–vis spectroscopy. The spectrophotometric studies demonstrated absorption maxima (λmax) and extinction coefficient (εmax) values in the ranges of 429–438 nm and 25,635–88,618 L/mol/cm, respectively. The dyeing, fastness and antimicrobial properties of dyed wool fibers were examined. Colorimetric measurements demonstrated a greenish‐yellow hue with remarkable fluorescence intensity on dyed wool. Although the fastness properties of naphthalimide dye on wool fibers were poor/moderate, color fastness was appreciably improved through modification of the dye using dendrimers. The results revealed that the newly synthesized dyes are potent antimicrobial agents on wool fibers. Overall, it was deduced that poly(amidoamine) (PAMAM) dendrimers could be exploited as a promising tool in tailoring the different properties of naphthalimide dyes, being suitable for dyeing and antimicrobial finishing agents for wool fibers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
本文研究了提取自麻栎壳斗的植物染料(麻栎染料)的耐酸、碱稳定性,染浴pH值及铝、铁离子等环保型媒染剂对其染毛织物效果的影响,并且探究了其染色动力学.研究表明,麻栎染料在强酸性染浴(pH=3)中对羊毛织物直接性好,染色后毛织物得棕色,也可采用铝离子、铁离子对直接染色后的毛织物进行后媒染,以得到不同色相的毛织物,尤其是铁后...  相似文献   

5.
Liposomes are lipid vesicles that are composed of amphiphile molecules and can carry hydrophobic and hydrophilic materials. In this research work liposomes used as carrier for transfer of dye molecules into wool fibers. The preparation and production of multilamellar liposomes (MLV) from Soya lecithin were carried out and the behavior of liposomes at different temperature was studied. The effect of different concentration of liposomes in the dye exhaustion profile of two dyes (Namely, Irgalan Blue FBL and Lanaset Blue 2R) at two different temperatures of 85 degrees C and 95 degrees C on the wool fabric was investigated. The results showed that presence of liposomes in the dye-bath helps to increase the dye absorption on the wool fabric before 80 degrees C. Dyeing at higher temperature and longer time leads to a decrease in the final exhaustion along with increase in the liposomes concentration. Liposomes at high temperature converted to the disperse phospholipids unimers that may deposited on the fabric surface and may produce a hydrophobic barrier against absorption of dye. The presence of 1% o.w.f. (on weight of fabric) of liposomes at 85 degrees C improved the dye exhaustion of Irgalan Blue FBL on the wool fabric. The wash fastness properties of samples which dyed in the dye-bath containing liposomes also improved.  相似文献   

6.
A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4‐amino‐N‐2‐aminomethylpyridine‐1,8‐naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N‐diethylaniline, N,N‐dihydroxyethylaniline, 8‐hydroxyquinoline, and 2‐methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), elemental analysis, and ultraviolet–visible (UV–visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate‐to‐good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N‐dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1086–1095, 2015  相似文献   

7.
A family of five strictly related glycoconjugated azo dyes (GADs), characterized by the presence of the same chromophore and a variable number (1-4) of deprotected hexose units, has been prepared by employing succinate bridges for connecting the azo dye and the sugar portions. The modulation of the hydrophilic portion determines the appreciable changes in the water solubility of GADs. In all the cases, however, hydrophobic fibres (polyester) were homogeneously dyed with GADs at temperatures lower than that used for original azo dyes, at atmospheric pressure, and avoiding the use of surfactants. Furthermore, GADs show an interesting multipurpose character leading to dyeing well also the natural fibres as, for instance, wool. The presence of a variable number of hexose units in the different GADs determines some changes in the colour intensity of dyed fabrics, but in all the cases an appreciable rubbing and water fastness were maintained.  相似文献   

8.
In recent years, the use of low-environmental impact biotechnology giving rises to new types of treatment in the textile industry. The use of protease enzymes to improve some physical and mechanical properties such as smoothness, drapeability, dyeing affinity and water absorbency is particularly interesting. In this research, wool yarns were first treated with different concentrations of protease enzymes in water solution including 1, 2, 4 and 6% o.w.f. for 60 min. The dyeing process was then carried out on the treated yarns with madder (50% o.w.f.). Tensile strength of treated yarns was decreased due to enzyme treatment and it continued to decrease with an increase in enzyme concentration in solution. The L* values decreased for the samples treated with enzyme. The wash and light fastness properties of samples were measured according to ISO 105-CO5 and Daylight ISO 105-BO1. The washing fastness properties of treated samples were not changed. In the case of light fastness properties, it was increased a little for 4% and 6% enzyme treated samples.  相似文献   

9.
HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties   总被引:2,自引:1,他引:1  
In order to achieve salt-free dyeing on cotton fiber with reactive dyes, an amino-terminated hyperbranched polymer (HBP-NH2) grafted cotton fiber (HGCF) was prepared by the oxidation of cotton fiber with sodium periodate in water and subsequent grafted with an aqueous solution of HBP-NH2. Fourier transform infrared spectrophotometry (FTIR) of the HGCF indicated that all aldehyde groups of the oxidized cotton fiber have reacted with amino groups of the HBP-NH2. As a result, the HGCF fabrics prepared under the optimum conditions displayed markedly enhanced colour strength when dyed with reactive dyes using salt-free dyeing. The washing fastness, rubbing fastness and levelling properties of the dyed HGCF fabrics were also good compared with those obtained by conventional dyeing. The zeta-potential of the HGCF in liquid phase was tested and found to be positive at pHs lower than 6.5. The dyeing behaviour of Reactive Brilliant Yellow A-4GLN on the HGCF was found to follow a Langmuir-type adsorption curve.  相似文献   

10.
角质酶/角蛋白酶一浴法处理对羊毛性能的影响   总被引:1,自引:0,他引:1  
采用T.fusca产角质酶以及Bacillus subtilis产角蛋白酶一浴法的方式处理羊毛,通过毡缩率、断裂强力、碱溶解度、上染速率、K/S值和接触角等指标考察了该处理对羊毛的改性效果,并运用XPS、氨基酸分析和SEM考察了其对羊毛结构与性质的影响。实验结果表明:经一浴法处理后,羊毛织物的毡缩率下降明显,达到机可洗要求;断裂强力下降较少,碱溶解度增加较少,上染速率提高,K/S值增加;XPS分析表明,经处理后羊毛纤维表面的元素含量变化较大;氨基酸分析表明,经处理后羊毛纤维中的胱氨酸质量分数有所降低;SEM显示,羊毛鳞片层大部分被剥除,综上可以说明角质酶/角蛋白酶的一浴法处理对羊毛具有明显的改性作用。  相似文献   

11.
The project ‘EXTRETEX’ funded by the German Federal Foundation Environment (DBU, Osnabrück, Germany) aims at the improvement of wool properties dyeability, handle, felting behaviour and degree of whiteness by means of enzymes derived from extremophilic micro-organisms. In this paper the effects of a commercial thermo- and alkalistable protease on wool with regard to the degree of whiteness, the dyeability and the felting behaviour are presented. A method to treat wool top and wool fabric was developed on a laboratory scale in which the protease was integrated into the pre-washing step of a dyeing process. This treatment method was than scaled up and tested on an industrial winch beck for fabric. With this method—the addition of enzyme in the pre-washing step—the degree of whiteness is generally enhanced. Dyeing untreated and the enzyme-treated wool with Lanasol Blue 8G leads to an improved dyestuff uptake and a distinctive difference in the colour shade for the latter. Microscopy pictures of fibre cross-sections of these samples display a more even distribution of the dyestuff and a better penetration in the enzyme-treated wool fibres but the colour fastness of the enzyme-treated wool is decreased. Though the felting behaviour of the protease treated wool is significantly improved the felting tendency is still too high for an antifelting finish. An increased damage of the enzyme-treated wool in comparison with the untreated one was not observed.  相似文献   

12.
This research work was carried out to compare the color stripping efficiency of optimized biological method with the chemical stripping, commonly employed in the textile industries. Knitted fabric dyed with Reactive black B dye in 2, 4 and 6% shades strengths was subjected to chemical and biological stripping processes individually. Biological stripping process was found many fold superior to chemical one. It was noted that shade strength does not showed any pronounced effect on the bursting strength of fabric but biological and chemical treatment affect the quality of fabrics in terms of bursting strength/durability of fabric. White rot fungus Ganoderma lucidum IBL-05 showed good potential for decolorization/color stripping of cotton fabric dyed with Reactive black B under optimized set of conditions. The chemical stripping technology is inferior to biological stripping process regarding the quality of fabric and percent color removal from cotton fabric dyed with Reactive black B dye.  相似文献   

13.
Poly-N-vinyl-2-pyrrolidone functionalization was done for improved the dyeability of dichlorotriazine dyes on cotton fabric. The synthesized ZnO nanoparticles were padded on functionalized cotton fabrics to improve antibacterial activity. The modification effects were characterized by FTIR, XRD, SEM and EDX studies. The antibacterial activity was done against Staphylococcus aureus and Escherichia coli bacterium. The dye exhaustion and fastness properties were analyzed for dyeing with sodium chloride, sodium sulfate and trisodium citrate bio-salt as exhausting agents. The functionalized cotton fabric showed improved dye uptake and good fastness properties. Poly-N-vinyl-2-pyrrolidone with ZnO nanoparticles padded fabrics showed very good antibacterial activity.  相似文献   

14.
So far, very little is known about microbiological deterioration of dyed woollen textiles. In this paper, the influence of the Gymnoascus arxii fungus on woollen textiles dyed with natural and synthetic dyes was studied. What is more, it was analysed whether the enrichment of the culture medium with additional nutrients has any impact on the deterioration of dyed woollen fabrics caused by a strongly keratinolytic strain. The study was carried out by means of a pure culture method over three different time periods, i.e. 1, 2 and 4 weeks. Within a week, the pure Gymnoascus arxii strain led to a severe deterioration in the mechanical strength of the examined woollen textiles, with the raw fabric being the most severely damaged. After the two-week incubation period, only the fabrics coloured in yellow, i.e. the fabric dyed with natural dye weld, and the synthetic yellow textile as well as the textile dyed with natural dye indigo survived, exclusively on the enriched medium. Solely the weld dyed textile withstood the four-week culture on the nutrient-enriched medium. The conducted studies demonstrated a strong influence of Gymnoascus arxii on dyed fabrics leading to their irreversible destruction. It has been also shown that the presence of nutrients in the substrate that are readily available to microorganism may hinder the development of the Gymnoascus arxii strain and thus, prevent textile deterioration.  相似文献   

15.
The concept presented in this paper is the utilisation of the natural flavonoids present in cotton as anchors to attach other phenolic compounds to the fiber surface. Laccase can catalyze the oxidation of flavonoids in solution producing quinones that can be further polymerised and grafted onto surface of the cotton providing yellow to brown colouration, depending on the external flavonoids used and on the reaction conditions. Factors such as temperature, time of reaction, pretreatment of cotton, mechanical agitation and the role of an organic solvent were studied in order to improve this laccase colouration reaction. After dyeing, colour measurements and fastness tests (washing, friction and weathering fastness) were performed. A strong mechanical agitation, an increased reaction temperature (from 30 to 50 °C), and the addition of an organic solvent improved dyeing.

The natural flavonoids present on cotton were found to play an important role on the grafting reaction, improving dyeing and colour fastness. Since the traditional bleaching pretreatment of cotton removes these natural flavonoids from cotton, the proposed laccase colouration reaction could be carried out without a previous bleaching treatment resulting in a more environmentally friendly process.  相似文献   


16.
本文研究由中药诃子制备的天然染料对棉织物染色方法,分别采用非媒、预媒、同媒和后媒四种染色方法,并运用多种媒染剂进行染色试验。研究结果表明:采用优化的铝预媒染色工艺可染得色泽鲜艳,色牢度较好的黄色棉织物。  相似文献   

17.
Cationic cotton was prepared by a designed two-bath pad-bake process with 3-chloro-2-hydroxypropyltrimethylammonium chloride as cationizing reagent to realize recycle utilization of the reagent and continuous processing of cationization. Experiments showed that 8.0% (o.w.bath) of the reagent, 1:1 of molar ratio of sodium hydroxide to the reagent, 60 °C and 6 min of baking temperature and time were selected for cationization and the obtained cationic cotton was suitable for application in salt-free reactive dyeing. The structures of both the untreated and cationic fibers were investigated by X-ray diffraction and scanning electronic microscopy. Higher dye utilization and color yields could be realized on the cationic cotton than that on the untreated one in the conventional dyeing. Levelness dyeing and good fastness properties of the dyes on the cationic fabrics were obtained. Besides, colorimetric properties and mechanical strength of the dyed fabrics were both evaluated to show applicability of this preparation process of cationic cotton.  相似文献   

18.
Reuse of reactive dyes for dyeing of jute fabric   总被引:1,自引:0,他引:1  
The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well.  相似文献   

19.
An ethnobotanical survey of practicing dyers in the biodiversity rich ecosystems of Sierra Leone and of the literature was conducted on the common plant species used to produce natural dyes. In addition, the methods used to obtain these dyes and to dye fabric, together with the techniques used to produce various patterns on fabric were investigated. Although the thriving dye industry is now predominantly serviced by synthetic dyes, the knowledge of the plants used still survives among some dyers, who use plant dyes to some extent. However this indigenous knowledge is rapidly being lost as increasingly less of it is being passed on to succeeding generations. Several plants used in the dyeing process are documented, together with their taxonomic characteristics; local names; how the dyes are produced and fabric dyed; the colors obtained; in addition to how various patterns are designed. Sustainable utilization of this important renewable natural resource is discussed.  相似文献   

20.
The main contribution of the presented work was to introduce the use of proteases modified with the soluble polymer polyethylene glycol (PEG) in the bio-finishing process of wool fibres, to target enzyme action to the outer parts of wool fibres, i.e. to avoid the diffusion and consequent destroying of the inner parts of the wool fibre structure, in the case of native proteases using.

Different proteolytic enzymes from Bacillus lentus and Bacillus subtilis in native and PEG-modified forms were investigated and their influence on the modification of wool fibres morphology surface, chemical structure, as well as the hydrolysis of wool proteins, the physico-mechanical properties, and the sorption properties of 1:2 metal complex dye during dyeing were studied. SEM images of wool fibres confirmed smoother and cleaner fibre surfaces without fibre damages using PEG-modified proteases. Modified enzyme products have a benefit effect on the wool fibres felting behaviours (14%) in the case when PEG-modified B. lentus is used, without markedly fibre damage expressed by tensile strength and weight loss of the fibre. Meanwhile the dye exhaustion showed slower but comparable level of dye uptake at the end of the dyeing.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号