首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ΔN123-glucan-binding domain-catalytic domain 2 (ΔN123-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN123-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite −1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN123-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN123-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN123-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.  相似文献   

2.
Highly conserved glycoside hydrolase family 70 glucansucrases are able to catalyze the synthesis of α-glucans with different structure from sucrose. The structural determinants of glucansucrase specificity have remained unclear. Residue Leu940 in domain B of GTF180, the glucansucrase of the probiotic bacterium Lactobacillus reuteri 180, was shown to vary in different glucansucrases and is close to the +1 glucosyl unit in the crystal structure of GTF180-ΔN in complex with maltose. Herein, we show that mutations in Leu940 of wild-type GTF180-ΔN all caused an increased percentage of (α1→6) linkages and a decreased percentage of (α1→3) linkages in the products. α-Glucans with potential different physicochemical properties (containing 67–100% of (α1→6) linkages) were produced by GTF180 and its Leu940 mutants. Mutant L940W was unable to form (α1→3) linkages and synthesized a smaller and linear glucan polysaccharide with only (α1→6) linkages. Docking studies revealed that the introduction of the large aromatic amino acid residue tryptophan at position 940 partially blocked the binding groove, preventing the isomalto-oligosaccharide acceptor to bind in an favorable orientation for the formation of (α1→3) linkages. Our data showed that the reaction specificity of GTF180 mutant was shifted either to increased polysaccharide synthesis (L940A, L940S, L940E, and L940F) or increased oligosaccharide synthesis (L940W). The L940W mutant is capable of producing a large amount of isomalto-oligosaccharides using released glucose from sucrose as acceptors. Thus, residue Leu940 in domain B is crucial for linkage and reaction specificity of GTF180. This study provides clear and novel insights into the structure-function relationships of glucansucrase enzymes.  相似文献   

3.
Two different heparin-binding fragments of human fibronectin have been crystallized in forms which are suitable for crystal structure analyses. The 30 kDa hep-2A fragment, consisting of type III domains 12–14, was crystallized from solutions containing ammonium sulfate or polyethylene glycol 6000. The crystals grown in ammonium sulfate solutions were orthorhombic with space group I222 or I212121 with a = 68.1 Å, b = 88.6 Å, and c = 144.9 Å. The crystals grown in polyethylene glycol solutions are hexagonal with space group P6122 or P6522 witha a = b = 66.7 Å and c = 245.7 Å. The 40 kDa hep-2B fragment, consisting of type III domains 12–15, was also crystallized from solutions containing ammonium sulfate with the addition of glycerol. Glycerol proved an effective agent for reducing the number of crystals in the crystallization experiments, and thus, increasing the size of the crystals in these experiments. This crystal form is nearly isomorphous to the orthorhombic form of the hep-2A fragment with space group I222 or I212121 and a = 67.5 Å, b = 87.0 Å, and c = 144.3 Å. All crystal forms diffract to at least 3.5 Å resolution and contain a single molecule in the asymmetric unit. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Endoglucanase CelC from Clostridium thermocellum expressed in Escherichia coli has been crystallized in two different crystal forms by the hanging drop method. Crystals of form I were grown with polyethylene glycol as a precipitant. They are orthorhombic, space group P212121, with cell dimensions a =51.4 Å, b =84.3 Å, and c =87.5 Å. Crystals of form II, obtained in ammonium sulfate solutions, belong to the tetragonal space group P41212 (or P43212) with cell dimensions of a = b = 130.7 Å and c = 69.6 Å. Diffraction data to 2.8 Å resolution were observed for both crystal forms with a rotating anode generator. Preliminary oscillation images of the orthorhombic form I crystals using a synchrotron radiation source show diffraction to 2.2 Å resolution, indicating that these crystals are suitable for high resolution crystallographic analysis. © 1994 Wiley-Liss, Inc.  相似文献   

5.
α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1→6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.  相似文献   

6.
The ImmE7 protein, which can bind specifically to the DNase colicin E7 and neutralize its bactericidal activity, has been purified and crystallized in two different crystal forms by vapor diffusion method. The orthorhombic crystals belong to space group I222 or I212121 and have unit cell dimensions a = 75.1 Å, b = 50.5 Å, and c = 45.4 Å. The second form is monoclinic space group P21 with ceil dimensions a = 29.3 Å, b = 102.7 Å, c = 53.0 Å and β = 91.5°. The orthorhombic crystals diffract to 1.8 Å resolution, and are suitable for high-resolution X-ray analysis. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Trichosanthin (TCS) is one of the single chain ribosome-inactivating proteins (RIPs). The crystals of the orthorhombic form of trichosanthin have been obtained from a citrate buffer (pH 5.4) with KC1 as the precipitant. The crystal belongs to the space group P212121 with a = 38.31, b = 76.22, c = 79.21 Å. The structure was solved by molecular replacement method and refined using the programs XPLOR and PROLSQ to an R-factor of 0.191 for the reflections within the 6–1.88 Å resolution range. The bond length and bond angle in the protein molecule have root-mean-square deviations from ideal value of 0.013 Å and 3.3°, respectively. The refined model includes 247 residues and 197 water molecules. The TCS molecule consists of two structural domains. The large domain contains six α-helices, a six stranded sheet, and an antiparallel β-sheet. The small domain has a largest α-helix, which shows a distinct bend. The possible active site of the molecule located on the cleft between two domains was proposed. In the active site Arg-163 and Glu-160, Glu-189 and Arg-122 form two ion pairs, Glu-189 and Gln-156 are hydrogen bonded to each other. Three water molecules are bonded to the residues in the active site region. The structures of TCS molecule and ricin A-chain (RTA) superimpose quite well, showing that the structures of the two protein molecules are homologous. Comparison of the structures of the TCS molecule in this orthorhombic crystal with that in the monoclinic crystal indicates that there are no essential differences of the structures between the two protein crystals. © 1994 Wiley-Liss, Inc.  相似文献   

8.
We have crystallized the N-terminal actin binding domain (ABD1) of human fimbrin, a representative member of the largest class of actin crosslinking proteins. Diffraction from these crystals is consistent with the orthorhombic space group P212121 (a = 50.03 Å, b = 61.24 Å, c = 102.30 Å). These crystals contain one molecule in the asymmetric unit and diffract to at least 1.9 Å resolution. The crystal structure of ABD1 will be the first structure of an actin crosslinking domain. Proteins 28:452–453, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
X-ray crystal structure of iridoid glucoside aucubin and its aglycone   总被引:1,自引:0,他引:1  
X-ray diffraction analyses of iridoid glycoside aucubin (1) and its aglycone aucubigenin (2) are reported. It was found that crystals of 1 are orthorhombic, with P212121 space group, both cyclopentane ring and pyran ring adopt envelope conformations, and the Glc moiety is in the 4C1 conformation. Crystals of 2 are monoclinic, with space group P21, the cyclopentane and pyran rings also adopt the envelope conformation. The absolute configurations of 1 and 2 were also determined. Intensive O–HO hydrogen bonds in both crystal lattices were observed.  相似文献   

10.
Crystals of recombinant aequorin, the photoprotein from the jellyfish Aequorea victoria, have been grown from solutions containing sodium phosphate. The crystals grow as thin plates which diffract to beyond 2.2 Å resolution. The crystals are orthorhombic, space group P21212 1; the axes are a = 89.1(1), b = 88.4(1), and c = 52.7(1) Å. The asymmetric unit contains two molecules. Crystals exposed to calcium ion solutions emit a steady glow and slowly deteriorate, confirming that the crystals consist of a charged, competent photoprotein. This represents the first successful preparation of single crystals of a photoprotein suitable for diffraction analysis. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The membrane-bound GPI-anchored zinc metalloproteinase leishmanolysin purified from Leishmania major promastigotes has been crystallized in its mature form. Two crystal forms of leishmanolysin have been grown by the vapor diffusion method using 2-methyl-2,4-pentanediol as the precipitant. Macroseeding techniques were employed to produce large single crystals. Protein microhet-erogeneity in molecular size and charge was incorporated into both crystal forms. The tetragonal crystal form belongs to the space group P41212 or the enantiomorph P43212, has unit cell parameters of a = b = 63.6 Å, c = 251.4 Å, and contains one molecule per asymmetric unit. The second crystal form is monoclinic, space group C2, with unit cell dimensions a = 107.2 Å, b = 90.6 Å, c = 70.6 Å, β = 110.6°, and also contains one molecule per asymmetric unit. Both crystal forms diffract X-rays beyond 2.6 Å resolution and are suitable for X-ray analysis. Native diffraction data sets have been collected and the structure determination of leishmanolysin using a combination of the isomorphous replacement and the molecular replacement methods is in progress. © 1995 Wiley-Liss, Inc.  相似文献   

12.
We report here the purification and characterization of a c-type cytochrome present in the soluble fraction of the gram-positive, alkaliphilic, and highly ureolytic soil bacterium Bacillus pasteurii. The cytochrome is acidic (pI = 3.3), has a molecular mass of 9.5 kDa, and appears to dimerize in 150 mM ionic strength solution. The electronic spectrum is typical of a low-spin hexa-coordinated heme iron. Crystals of the protein in the oxidized state were grown by vapor diffusion at pH 5, by using 3.2 M ammonium sulfate as precipitant. Diffraction data at ultrahigh resolution (0.97 Å) and completeness (99.9%) have been collected under cryogenic conditions, by using synchrotron radiation. The crystals belong to the orthorhombic space group P212121, with cell constants a = 37.14, b = 39.42, c = 44.02 Å, and one protein monomer per asymmetric unit. Attempts to solve the crystal structure by ab initio methods are in progress. Proteins 28:580–585, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

13.
Phospholipid transfer protein from maize seedlings has been crystallized using trisodium citrate as precipitant. The crystal belongs to the orthorhombic space group P212121 with unit cell dimensions of a = 24.46 Å, b = 49.97 Å, and c = 69.99 Å. The presence of one molecule in the asymmetric unit gives a crystal volume per protein mass (Vm) of 2.36 Å 3/Da and a solvent content of 48% by volume. The X-ray diffraction pattern extends at least to 1.6 Å Bragg spacing when exposed to both CuKα and synchrotron X-rays. A set of X-ray data to approximately 1.9 Å Bragg spacing has been collected from a native crystal. © 1994 Wiley-Liss, Inc.  相似文献   

14.
F. P. Booy  H. Chanzy  A. Sarko 《Biopolymers》1979,18(9):2261-2266
Electron diffraction patterns obtained from single crystals of amylose complexed with n-butanol are reported. The crystals were examined in the frozen state, after quench-freezing in liquid nitrogen in order to maintain the complexed state in the electron microscope. The patterns may be indexed in the base plane with an orthorhombic unit cell of dimensions a = 27.0 ± 0.2 Å and b = 26.4 ± 0.2 Å, and the symmetry of the patterns is consistent with the P212121 space group. The relationship between the orthorhombic patterns and the pseudohexagonal patterns obtained by previous workers from dried crystals is discussed.  相似文献   

15.
Abstract

The crystal and molecular structure of sodium deoxyinosine monophosphate (5′-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Å, b = 9.206(3) Å and c = 12.770(6) Å. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2′ endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3′ atom, a feature observed in many crystal structures of sodium salts of nucleotides.  相似文献   

16.
Beef heart mitochondrial coupling factor (BF1) was crystallized from 0.1 M Tris-PO4, pH 7.8, containing 1 mM EDTA, 4 mM ATP and 1.85 M (NH4)2SO4, at 22°C. Single crystals were obtained different from those reported by Spitzberg and Haworth (Biochim. Biophys. Acta 492, 237–240, 1977). The X-ray diffraction pattern reveals an orthorhombic lattice with a = 150 Å, b = 132 Å and c = 180 Å and, according to the absence of reflection, a space group of C2221. The crystal density was determined to 1.19 g·ml?1 and, assuming a molecular weight of 350,000 for BF1, there is only one half of the BF1 molecule in the asymmetric unit cell.  相似文献   

17.
Abstract

Native, general sequence B-form DNA in uniaxially oriented fibers is a ten-fold helix with identical antiparallel strands: this is to say the molecular symmetry is 2 2 101. The diffraction patterns indicate that local variations, however significant, must be modest. This is true also for the lithium salt of calf thymus DNA in fibers that are polycrystalline as well as oriented. The contents of its orthorhombic unit cells are arranged with P212121 symmetry which permits the molecular symmetry to be merely two-fold. The molecular structure of DNA in such conditions resembles, conformationally and molecularly, that of B-type DNA in oligonucleotide single crystals and in oriented polycrystalline fibers of polyoligonucleotides, and therefore provides a basis for evaluating the variations that may be due to sequence effects in polyoligonucleotides in fibers and oligonucleotides in single crystals.  相似文献   

18.
A neutral lipase from the filamentous fungus Rhizopus delemar has been crystallized in both its proenzyme and mature forms. Although the latter crystallizes readily and produces a variety of crystal forms, only one was found to be suitable for X-ray studies. It is monoclinic (C2, a = 92.8 Å, b = 128.9 Å, c = 78.3 Å, β = 135.8) with two molecules in the asymmetric unit related by a noncrystallographic diad. The prolipase crystals are orthorhombic (P212121, with a = 79.8 Å, b = 115.2 Å, c = 73.0 Å) and also contain a pair of molecules in the asymmetric unit. Initial results of molecular replacement calculations using the refined coordinates of the related lipase from Rhizomucor miehei identified the correct orientations and positions of the protein molecules in the unit cells of crystals of both proenzyme and the mature form. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Abstract

The crystal and molecular structure of anthracycline antibiotic steffimycin B(C29H320O13) has been determined by X-ray diffraction and the stereochemistry revealed. The orthorhombic crystals belong to space group P212121, with the dimensions; a = 8.253 (2), b = 8.198 (2), c = 40.850 (8) Å and Z = 4. Intensity data were collected for 2518 independent reflections. The structure was solved by direct methods and refined to an R value of 0.066 for 1410 reflections. The configuration in ring A is TR,8S,9S. Ring A adopts half chair conformation, while the sugar ring has the regular chair conformation. The molecule most probably binds to double helical DNA through intercalation and hydrogen bonding.  相似文献   

20.
Large crystals of arylesterase from Pseudomonas fluorescens have been grown at room temperature using ammonium sulfate as a precipitant. They grow to dimensions of 0.7 × 0.7 × 0.6 mm3 within a month. The crystals belong to the trigonal space group P31 (or P32), with unit cell dimensions of a= 147.12 Å and c= 131.08 Å. The asymmetric unit seems to contain six molecules of dimeric aryles-terase, with corresponding crystal volume per protein mass (VM ) of 2.53 Å3/Da and solvent fraction of 51.5% by volume. The crystals diffract to at least 2.2 Å Bragg spacing when exposed to X-rays from a rotating-anode source. X-ray data have been collected to 2.9 Å Bragg spacing from native crystals. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号