首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New biocatalysts were developed using organophosphorus hydrolase (OPH, EC 3.1.8.1) with a polyhistidine tag at the N-terminus of the protein (His6-OPH). The use of His6-OPH together with previously developed approaches for the entrapment of cells into poly(vinyl alcohol) cryogels and covalent immobilization of enzymes into porous fabric materials, impregnated with chemically cross-linked chitosan sulphate gel, enabled dramatic improvement of catalytic characteristics against various organophosphorous compounds (OPCs; Paraoxon, Coumaphos, Methyl parathion, etc.). The polyhistidine tag of OPH was used to create a new immobilized biocatalyst using metal-chelating carriers, such as Ni2+-nitrilotriacetic acid-agarose and Co2+-iminodiacetic acid-polyacrylamide cryogel. The latter biocatalyst had high activity and stability for the continuous hydrolysis of OPCs.  相似文献   

2.
Decontamination of soils with complex pollution using natural strains of microorganisms is a matter of great importance. Here we report that oil-oxidizing bacteria Rhodococcus erythropolis AC-1514D and Rhodococcus ruber AC-1513D can degrade various organophosphorous pesticides (OP). Cell-mediated degradation of five different OP is apparently associated with the presence of N-acylhomoserine lactonase, which is pronouncedly similar (46–50 %) to the well-known enzyme organophosphate hydrolase (OPH), a hydrolysis catalyst for a wide variety of organophosphorous compounds. Additionally, we demonstrated the high lactonase activity of hexahistidine-tagged organophosphate hydrolase (His6-OPH) with respect to various N-acylhomoserine lactones, and we determined the catalytic constants of His6-OPH towards these compounds. These experimental data and theoretical analysis confirmed the hypothesis about the evolutionary proximity of OPH and lactonases. Using Rhodococcus cells, we carried out effective simultaneous biodegradation of pesticide paraoxon (88 mg/kg) and oil hydrocarbon hexadecane (6.3 g/kg) in the soil. Furthermore, the discovered high lactonase activity of His6-OPH offers new possibilities for developing an efficient strategy of combating resistant populations of Gram-negative bacterial cells.  相似文献   

3.
The catalytic properties of organophosphate hydrolase (OPH) containing a hexahistidine tag His6 (His6-OPH) and purified to 98% homogeneity were investigated. The pH optimum of enzymatic activity and isoelectric point of His6-OPH, which were shown to be 10.5 and 8.5, respectively, are shifted to the alkaline range as compared to the same parameters of the native OPH. The recombinant enzyme possessed improved catalytic activity towards S-containing substrates: the catalytic efficiency of methylparathion hydrolysis by His6-OPH is 4.2 x 10(6) M(-1) x sec(-1), whereas by native OPH it is 3.5 x 10(5) M(-1) x sec(-1).  相似文献   

4.
Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)–polyacrylamide cryogel (PAA) and Me2+-N,N,N’-tris (carboxymethyl) ethylendiamine (TED)–PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA–PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA–PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA–PAA and Ni-nitrilotriacetic acid–agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration.  相似文献   

5.
An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 °C and withstanding incubation at temperatures up to 70 °C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta, Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 Å. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those factors most important for maintaining the structure and function of the enzyme.  相似文献   

6.
Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [Ochr-methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.  相似文献   

7.
Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60–80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6–7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.  相似文献   

8.
Random mutagenesis was performed on β-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K–T307I were approx. 140, 190 and 200%, respectively, of wild type β-agarase (661 U/mg) at 40°C. All three mutant enzymes were stable up to 50°C and E99K–T307I had the highest thermostability. The melting temperature (T m) of E99K–T307I, determined by CD spectra, was increased by 5.2°C over that of the wild-type enzyme (54.6°C). Activities of both the wild-type and E99K–T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K–T307I enzyme was stable at 55°C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40°C without CaCl2.  相似文献   

9.
Organophosphorus pesticides (OP) are used to protect crops from pests. Treatment of plants and animals with pesticides can be done during their growth or creation of conditions required for the long-shelf life of the agricultural products. Currently, many remedies exist for prevention and removal of intoxication consequences developed in living organisms exposed to OPs. The development of biologics for degradation of OPs and biotechnologies for their application in agriculture still represents an important task. New biologics based on stabilized forms of such enzyme as hexahistidine-tagged organophosphorus hydrolase (His6-OPH) have been in the form of nano-sized particles for OPs detoxification. They represent enzyme-polyelectrolyte complexes (EPC) obtained by mixing solutions of His6-OPH and polyanion under certain conditions. The main purpose of this work was to evaluate the usage efficiency of EPC based on His6-OPH and polyglutamic acid for OPs detoxification by analyzing biochemical blood parameters of rats fed with a grain mix containing chlorpyrifos. The experiment was conducted using female Sprague-Dowly albino rats. Treatment of the feeding grain mix initially containing chlopyrifos (48 mg/kg of the mix) with EPC based on His6-OPH (1000 U/kg of the mix) for 24 h was the most effective. The results showed that acetyl cholinesterase activity in blood of rats from the group consuming food after the enzymatic removal of chlorpyrifos, was comparable to acetyl cholinesterase activity in blood of rats consuming pure food.  相似文献   

10.
The effect of stabilizing and destabilizing salts on the catalytic behavior of ribonuclease A (RNase A) was investigated at pH 7.5 and 25°C, using spectrophotometric, viscometric and molecular dynamic methods. The changes in the distance between Nε2 of His12 and Nδ1 of His119 at the catalytic center of RNase A upon the addition of sodium sulfate, sodium hydrogen sulfate and sodium thiocyanate were evaluated by molecular dynamic methods. The compactness and expansion in terms of Stokes radius of RNase A upon the addition of sulfate ions as kosmotropic salts, and thiocyanate ion as a chaotropic salt, were estimated by viscometric measurements. Enzyme activity was measured using cytidine 2′, 3′-cyclic monophosphate as a substrate. The results from the measurements of distances between Nε2 of His12 and Nδ1 of His119 and Stokes radius suggest (i) that the presence of sulfate ions decreases the distance between the catalytic His residues and increases the globular compactness, and (ii) that there is an expansion of the enzyme surface as well as elongation of the catalytic center in the presence of thiocyanate ion. These findings are in agreement with activity measurements.  相似文献   

11.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

12.
The Sphingopyxis sp. 113P3 gene oph, encoding oxidized polyvinyl alcohol hydrolase (OPH), was optimized with the preferred codons of Pichia pastoris and ligated into the pPIC9K vector behind the α-factor signal sequence. The vector was then transfected into P. pastoris GS115 and genomic integration was confirmed. Large-scale production of recombinant protein was performed by induction with 14.4 g/L methanol at 22 °C in a 3-L bioreactor. The maximal OPH activity obtained was 68.4 U/mL, which is the highest activity reported. The optimal pH and temperature of recombinant OPH were 8.0 and 45 °C, respectively. OPH activity was stable over a pH range of 5.0–8.5, and at a maximal temperature of 45 °C. The K cat /K m of recombinant OPH was 598 mM?1 s?1, which was 4.27-fold higher than that of recombinant OPH derived from Escherichia coli. The improved catalytic efficiency of OPH expressed in recombinant P. pastoris makes it favorable for industrial applications.  相似文献   

13.

Objectives

To improve the thermostability and catalytic property of a mesophilic 1,3-1,4-β-glucanase by combinational mutagenesis and to test its effect in congress mashing.

Results

A mutant β-glucanase (rE-BglTO) constructed by combinational mutagenesis showed a 25 °C increase in optimal temperature (to 70 °C) a 19.5 °C rise in T 50 value and a 15.6 °C increase in melting temperature compared to wild-type enzyme. Its half-life values at 60 and 70 °C were 152 and 99 min, which were 370 and 800 % higher than those of wild-type enzyme. Besides, its specific activity and k cat value were 42,734 U mg?1 and 189 s?1 while its stability under acidic conditions was also improved. In flask fermentation, the catalytic activity of rE-BglTO reached 2381 U ml?1, which was 63 % higher than that of wild-type enzyme. The addition of rE-BglTO in congress mashing decreased the filtration time and viscosity by 21.3 and 9.6 %, respectively.

Conclusions

The mutant β-glucanase showed high catalytic activity and thermostability which indicated that rE-BglTO is a good candidate for application in the brewing industry.
  相似文献   

14.
Saccharomyces cerevisiae invertase was chemically modified with chitosan and further immobilized on sodium alginate-coated chitin support. The yield of immobilized protein was determined as 85% and the enzyme retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 °C and its thermostability was enhanced by about 9 °C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was four-fold more resistant to thermal treatment at 65 °C than the native counterpart. The biocatalyst prepared retained 80% of the original catalytic activity after 50 h under continuous operational regime in a packed bed reactor.  相似文献   

15.
Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability.  相似文献   

16.
Two different types of approach were taken to improve the hydrolytic activity towards crystalline cellulose at elevated temperatures of Melanocarpus albomyces Cel7B (Ma Cel7B), a single-module GH-7 family cellobiohydrolase. Structure-guided protein engineering was used to introduce an additional tenth disulphide bridge to the Ma Cel7B catalytic module. In addition, a fusion protein was constructed by linking a cellulose-binding module (CBM) and a linker from the Trichoderma reesei Cel7A to the C terminus of Ma Cel7B. Both approaches proved successful. The disulphide bridge mutation G4C/M70C located near the N terminus, close to the entrance of the active site tunnel of Ma Cel7B, led to improved thermostability (ΔT m = 2.5°C). By adding the earlier found thermostability-increasing mutation S290T (ΔT m = 1.5°C) together with the disulphide bridge mutation, the unfolding temperature was increased by 4°C (mutant G4C/M70C/S290T) compared to that of the wild-type enzyme, thus showing an additive effect on thermostability. Both disulphide mutants had increased activity towards microcrystalline cellulose (Avicel) at 75°C, apparently solely because of their improved thermostability. The addition of a CBM also improved the thermostability (ΔT m = 2.5°C) and caused a clear (sevenfold) increase in the hydrolysis activity of Ma Cel7B towards Avicel at 70°C.  相似文献   

17.
A lip gene from a Bacillus isolate was cloned and expressed in E. coli. By thermal denaturation analysis, T1/2 of lipase was observed to be 7 min at 50°C with less than 10% activity after 1 h incubation at 50°C. To expand the functionality of cloned lipase, attempts have been made to create thermostable variants of lip gene. A lipase variant with an isoleucine to threonine amino acid substitution at the protein surface was isolated that demonstrated higher thermostability than its wild type predecessor. To explore the structure–function relationship, the lip gene product of wild type (WT) and mutant was characterized in detail. The mutation enhanced the specific activity of enzyme by 2-folds when compared with WT. The mutant enzyme showed enhanced T1/2 of 21 min at 50°C. The kinetic parameters of the mutant enzyme were significantly altered. The mutant enzyme displayed higher affinity for substrate (decreased K m ) in comparison to the wild type. The k cat and catalytic efficiency (k cat/K m ) of mutant were also enhanced by two and five times, respectively, as compared with the WT. The mutation resides on the part of helix which is exposed to the solvent and away from the catalytic triad. The replacement of a solvent exposed hydrophobic residue (Ile) in WT with a hydrophilic residue (Thr) in mutant might impart thermostability to the protein structure.  相似文献   

18.
The endoglucanase gene endo753 from Aspergillus flavus NRRL3357 strains was cloned, and the recombinant Endo753 was displayed on the cell surface of Saccharomyces cerevisiae EBY100 strain by the C-terminal fusion using Aga2p protein as anchor attachment tag. The results of indirect immunofluorescence and Western blot confirmed the expression and localization of Endo753 on the yeast cell surface. The hydrolytic activity test of the whole-cell enzyme revealed that Endo753 immobilized on the yeast cell surface had high endoglucanase activity. The functional characterization of the whole-cell enzyme was investigated, and the whole-cell enzyme displayed the maximum activity at pH 8 and 50 °C. The enzyme was stable in a pH range of 7.0–10.0. Furthermore, the whole-cell enzyme displayed high thermostability below 50 °C and moderate stability between 50 and 70 °C. These properties make endo753 a good candidate in bioethanol production from lignocellulosic materials after displaying on the yeast cell surface.  相似文献   

19.
Three Stenotrophomonas maltophilia isolates, KKWT11, CBF10-1, TTF10, were collected from organophosphate (OP)-contaminated soil in the Houston metropolitan area. A conserved metallo-β-lactamase (MBL) enzyme purported to function as a methyl parathion hydrolase was identified and found to be distantly homologous to the characterized Pseudomonas sp. WBC-3 methyl parathion hydrolase and shared no significant homology with other organophosphate hydrolases. Following expression of MBL enzymes cloned from S. maltophilia strains KKWT11, CBF10-1, and TTF10, respectively, an enzymatic preference for paraoxon was observed, with concentrations of 70, 40, and 30 µM of p-nitrophenol (PNP) formed after 48 h. Comparatively limited hydrolysis against the phosphorothioate methyl parathion was recorded with concentrations of PNP ranging from 9.5 to 3.5 µM after 48 h. A coexpressive construct harboring a modified organophosphorus hydrolase enzyme and the CBF10-1 MBL enzyme yielded only a slight improvement in degradation of methyl parathion, resulting in 75 µM of PNP formed compared with 69 µM formed by the organophosphorus hydrolase (OPH) control over 48 h. These results suggest that S. maltophilia MBL enzymes are currently insufficient for broad-spectrum hydrolysis of phosphorothioate insecticides. Future studies will thus seek to elucidate their catalytic efficiency against other notable phosphotriester oxons, including chlorpyrifos oxon, and malaoxon.  相似文献   

20.
Lin LL  Hsu WH  Hsu WY  Kan SC  Hu HY 《Antonie van Leeuwenhoek》2005,88(3-4):189-197
Two degenerate primers established from the alignment of highly conserved amino acid sequences of bacterial dihydropyrimidinases (DHPs) were used to amplify a 330-bp gene fragment from the genomic DNA of Bacillus sp. TS-23 and the amplified DNA was successfully used as a probe to clone a dhp gene from the strain. The open reading frame of the gene consisted of 1422 bp and was deduced to contain 472 amino acids with a molecular mass of 52 kDa. The deduced amino acid sequence exhibited greater than 45% identity with that of prokaryotic d-hydantoinases and eukaryotic DHPs. Phylogenetic analysis showed that Bacillus sp. TS-23 DHP is grouped together with Bacillus stearothermophilus d-hydantoinase and related to dihydroorotases and allantoinases from various organisms. His6-tagged DHP was over-expressed in Escherichia coli and purified by immobilized metal affinity chromatography to a specific activity of 3.46 U mg−1 protein. The optimal pH and temperature for the purified enzyme were 8.0 and 60 °C, respectively. The half-life of His6-tagged DHP was 25 days at 50 °C. The enzyme activity was stimulated by Co2+ and Mn2+ ions. His6-tagged DHP was most active toward dihydrouracil followed by hydantoin derivatives. The catalytic efficiencies (kcat/Km) of the enzyme for dihydrouracil and hydantoin were 2.58 and 0.61 s−1 mM−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号