首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

2.
Classification of riverbed geomorphic surfaces based on flooding frequency was conducted and the relationship between their distribution and river morphology was analyzed, to provide an understanding of the structure and species composition of riparian forests dominated by Chosenia arbutifolia. The channel floors of two contrasting river morphologies (bar-braided and incised meandering channels), were divided into five geomorphic surfaces (gravel bar, lower and upper floodplains, secondary channel, and terrace) based on the water level of a 2-yr and a 20-yr recurrence interval. The environmental variables of the same geomorphic surfaces showed similar trends regardless of braided and meandering channel morphology, but differed significantly among the five geomorphic surfaces, which influenced the dominance of tree species. The geomorphic surface map based on recurrence interval of flood and physiognomical vegetation map based on aerial photos appeared almost identical. Geomorphic surface distribution, determined by river channel dynamics and the sediment transport processes occurring at a larger scale and a longer time frame, played an important role in shaping the structure and composition of the riparian forests. C. arbutifolia dominated gravel bar, and the upper and lower floodplains, because these geomorphic surfaces were characterized by gravelly soils which have lower soil moisture availability than soils of other geomorphic surfaces. Thus, an extensive distribution of C. arbutifolia in the braided channel section can be attributed to the frequent lateral migrations of river channels, which resulted in a high ratio of gravel bars, and lower and upper floodplains. In order to preserve indigenous plant communities in riparian zone, dynamic nature and processes of braided rivers should be maintained.  相似文献   

3.
修晨  郑华  欧阳志云 《生态学报》2016,36(15):4689-4698
强烈的人类活动对自然生境的扰动促进了外来植物侵入河岸带,但不同类型的人类活动干扰对外来植物的影响有所不同。按照不同人类活动干扰类型设置了山峡段、平原段和城市段,通过比较河段间河岸带外来植物群落特征的差异,探讨不同人类活动干扰类型对河岸带外来植物群落的影响。结果表明:(1)永定河河岸带共有维管束植物27科72属101种,外来植物13科28属29种。外来种比例高达28.7%,其中82.4%的国外外来种来自美洲和亚洲。(2)不同河段间的外来植物群落的物种构成和优势度呈现出显著性差异。外来种比例由山峡段的20.9%,上升至平原段和城市段的30.2%和25.5%;而优势度由12.1%,分别上升至13.4%和17.5%。(3)不同河段间的外来植物群落生活型结构有显著性差异。多年生草本植物在山峡段比例最高,达到66.7%,在平原段和城市段较低,分别为46.2%和30.8%;而一年生草本植物在城市段比例最高,达到69.2%,在平原段和山峡段较低,分别为53.8%和33.3%。(4)平原段属于农业干扰类型,其河岸带外来植物主要以农业类杂草为主,如禾本科的假稻(Leersia japonica)和菊科的钻叶紫菀(Aster subulatu);城市段是城市干扰类型,外来植物中入侵种比例和优势度较高,典型入侵种为反枝苋(Amaranthus retroflexus)和牛筋草(Eleusine indica)等。北京永定河不同河段河岸带外来植物的种类构成特点,反映了河岸带外来植物受快速城市化、农业活动等不同人类活动干扰的影响呈逐渐扩大的趋势。  相似文献   

4.
The Njoro River riparian vegetation species composition, distribution, disturbances and uses are presented and discussed. Montane Juniperus procera-Olea europaea spp. africana and submontane Acacia abyssinica forests were identified as the main riparian vegetation groups. Approximately 55% of the riparian vegetation species are used for herbal medicine, treating more than 330 health problems, and only 11% of the plants are edible. Albizzia gummifera in the Syzygium cordatum-Pittosporum abyssinicum-Hibiscus diversifolius forest is cut selectively for herbal medicine preparations. Disturbances on the riparian vegetation zone are broadly classified as those induced by man, livestock and wildlife. Comprehensive effects of disturbance included loss of vegetation vertical strata, increase/decrease of species diversity, introduction of alien plant species, and reduction of plant sizes and vegetation hectarage. The effects of grazing on the vegetation were severe around livestock watering points. Grazing and browsing by wildlife were the main disturbances of the vegetation near the Njoro River estuary at the Lake Nakuru National Park. Periodic flooding, as a natural disturbance, regulates growth and survival of vegetation at the Lake Nakuru drawdown. Quantification of species diversity and the extent of disturbance by humans and livestock is important for future management of the vegetation and, consequently, the river.  相似文献   

5.
During the last century, canalization of the Rhine river led to disconnection of side‐arms, over‐sedimentation of these channels, loss of the fluvial dynamics, and aquatic vegetation change or disappearance. Recent restoration projects aim to reconnect disconnected arms to the main channel. The objective of this study was to assess the nutrient dynamics in restored channels during the vegetation colonization process. In spring, summer, and autumn 2009, the phosphorus and nitrogen contents were measured in water, sediment, and plants, sampled in six channels, two reference sites and four restored ones at different dates. Aquatic vegetation was monitored during the same period. Sites were mesotrophic related to the water nutrient concentrations. However, vegetation communities indicated a eutrophic level, as they were dominated by species like Elodea nuttallii, Myriophyllum spicatum, and Potamogeton perfoliatus. Sites were discriminated by P content and mineral nitrogen in the sediment. We showed an effect of species and season on the plant nutrient content, but there was no relationship between plant nutrient content and nutrients in water and sediment. A negative correlation between mean N plant content and the cover of each species was found. Vegetation characteristics (species richness and cover) and bioavailable phosphorus in the sediment were also correlated. In the restored side‐arms of the river Rhine, phosphorus‐rich sediment seems to be important in the recolonization dynamics, as it was linked to higher species richness, whereas nitrogen played a role in the colonization patterns as a growth limiting factor.  相似文献   

6.
Non-native vegetation in the riparian zone impacts on water temperatures, flow patterns, degree of shading, channel modification, and changes to natural sediment loads. Freshwater ecosystems in the Garden Route Initiative planning domain are of particular conservation value, because of the rich Gondwanaland relict aquatic macroinvertebrate fauna found in the rivers there, which are vulnerable to thermal changes. Data were collected during 2013 and 2014 at 19 sites on seven river systems between George and Knysna in the southern Cape, South Africa. These included 12 months of hourly water temperatures at all sites, and quantitative sampling of aquatic macroinvertebrates at ten sites. Each site was characterised in terms of water quality (pH, conductivity and turbidity) and general characteristics, including impacts such as density of non-native riparian trees. At the family level, aquatic macroinvertebrate communities showed variation between sites and seasons. Differences were more pronounced on the basis of natural land cover type (fynbos versus indigenous forest) than densities of non-native invasive riparian vegetation. Conservation of these river systems will depend on maintaining a mosaic of natural vegetation types.  相似文献   

7.
漓江滨岸草带对径流泥沙的拦截效果   总被引:1,自引:0,他引:1  
张丹丹  王冬梅  信忠保  史常青 《生态学报》2016,36(21):6985-6993
位于污染源和受纳水体之间的滨岸带对径流泥沙的过滤作用已经得到广泛认可,滨岸植被的存在能降低径流流速,增加土壤入渗,延缓产流时间,促使径流中的悬浮物质得到沉积。而关于漓江滨岸草带过滤作用的相关定量研究和应用尚未见报道。为探索影响草带过滤效果的影响因素,在广西漓江滨岸带内按不同植被条件、不同带宽布设6个试验小区,通过小区放水试验测定滨岸草带对径流泥沙的拦截效果。结果表明:草带能有效拦截径流悬浮物,对径流、泥沙的拦截率分别达到66%和68%,当草带宽度增加到10m时拦截率均达90%。带宽是影响径流泥沙拦截的主导因素。植被条件是影响拦截效果的又一重要因素,而初始含水量和入流泥沙浓度对拦截效果的影响较小。同一草带对泥沙的拦截效果优于径流的拦截效果,且二者之间存在密切的线性关系。  相似文献   

8.
9.
  1. Flow regulation is a prolific and growing influence on rivers world-wide. Nine cascade hydropower dams were constructed along the 1,150-km Wujiang River in China over the past 30 years, disrupting longitudinal continuity. Water level fluctuations in the associated reservoirs range between daily, weekly, seasonal, and annual, depending on the type of regulation, but the comparative impacts of these regimes on plant growth strategies, or the extent of their downstream influence, is unknown.
  2. Competitor, stress-tolerator, and ruderal (CSR) plant strategies were used to assess the impact of reservoir regulation type on the riparian herbaceous plant community based on sampling the inundation zone of nine reservoirs and their downstream river reaches during 2017 and 2018.
  3. Our results revealed profound differences in CSR plant strategies of the dominant vegetation with respect to water level regime. While ruderal plants dominated (45%–60% of species), irrespective of regulation type, vegetation in reservoirs exhibited a strong shift from stress-tolerators (e.g., Cynodon dactylon, C-11.9:S-41.5:R-46.5%) to competitors (e.g., Reynoutria japonica, C-77.9:S-0:R-22.0%) with increasing intensity of water level fluctuation, reflecting the shift from annual to daily regulation. The width of the inundation zone was the best overall variable in explaining the CSR strategies of riparian vegetation, both in the reservoir inundation zone (r2-adj = 15.4%) and the downstream river (r2-adj = 7.3%). Retention time significantly explained variation in CSR plant strategies in the reservoir inundation zone (r2-adj = 3.7%, p = 0.002) but not downstream (p > 0.01). There was also a clear scale dependency of CSR plant strategies, with an increase in stress tolerators (average slope = 0.7%/km) and decline of competitor (average slope = −0.3%/km) and ruderal plants (average slope = −0.9%/km) with increasing distance downstream from dams.
  4. The growth strategies of the dominant riparian vegetation changed with the magnitude and frequency of water level fluctuations caused by differences in regulation type, and local environmental conditions. Clear scale dependency in the CSR plant strategies was observed with distance from the dam, with ruderals dominating closest to the reservoirs and declining gradually downstream as stress tolerators increased.
  5. Our study helps to evaluate the impact of river damming on the functional traits of riparian vegetation and to predict the resilience and restoration potential of riparian vegetation under different forms of human disturbance.
  相似文献   

10.
叶飞  陈求稳    吴世勇  蔡德所  王洪梅 《生态学报》2008,28(6):2604-2604~2613
岸边带是水-陆之间的过渡和缓冲地带,是河流生态系统的重要组成部分.岸边带对拦截径流中的固体颗粒、吸收营养盐、减少入河污染负荷有重要作用.受河流水位季节性波动的影响,岸边带生态系统的变化非常剧烈,而当水库等水工建筑的运行剧烈改变河流的水文情势时,水库下游的岸边带生态系统将受到长期的累积性影响.因此,研究复式河道岸边带植被动态对于受损河流生态修复以及河流开发运行的生态环境影响规避具有重要意义.通过原位样方观测和室内水槽模拟试验,开发了岸边带植被演替模型,该模型耦合了全局基于连续性模式的水动力模块和局部基于元胞自动机模式的植被演替模块,并以漓江中游的一段复式河道为例,通过模拟水库运行前后长序列的水文情势变化和3种岸边带植物(刺果酸模、水蓼和益母草)的生长演替,分析了为满足旅游航道需求上游水库补水运行对下游岸边带植被的影响.  相似文献   

11.
River channels tend to a dynamic equilibrium driven by the dynamics of water and sediment discharge. The resulting fluctuating pattern of channel form is affected by the slope, the substrate erodibility, and the vegetation in the river corridor and in the catchment. Geomorphology is basic to river biodiversity and ecosystem functioning since the channel pattern provides habitat for the biota and physical framework for ecosystem processes. Human activities increasingly change the natural drivers of channel morphology on a global scale (e.g. urbanization increases hydrological extremes, and clearing of forests for agriculture increases sediment yield). In addition, human actions common along world rivers impact channel dynamics directly, e.g. river regulation simplifies and fossilizes channel form. River conservation and restoration must incorporate mechanisms of channel formation and ecological consequences of channel form and dynamics. This article (1) summarizes the role of channel form on biodiversity and functioning of river ecosystems, (2) describes spatial complexity, connectivity and dynamism as three key hydromorphological attributes, (3) identifies prevalent human activities that impact these key components and (4) analyzes gaps in current knowledge and identifies future research topics.  相似文献   

12.
《新西兰生态学杂志》2011,30(3):357-370
Forest vegetation patterns alongside the Poerua River, south Westland, were studied to determine whether a distinct riparian community could be defined either immediately adjacent to the river, or out to the limit of overbank flooding. Ten randomly located 100 m transects were established perpendicular to the river at each of two sites. Ground cover of alluvial sediment indicated that annual overbank flooding occurred up to 20 m into the forest (the flood zone). No significant difference in vascular plant species richness was found between the flood zone and non-flood zone at either site, however a significant difference in species richness was found between sites, and this was attributed to recent disturbance at the edge of one site. Detrended correspondence analysis separated plots by site and indicated a gradient of species change from the river’s edge to the ends of the transects. There were inconsistent differences in the densities and/or basal areas of trees and shrubs between sites and zones. No distinct band of vegetation was recognizable as a riparian zone alongside the Poerua River. Instead, there was evidence that edge processes had influenced vegetation patterns on a gradient away from the river, fluvial processes had eroded into, and influenced the vegetated edge, and historical disturbance events had had strong effects on vascular plant community composition. The riparian zone incorporates the whole floodplain and environmental management needs to take this into consideration.  相似文献   

13.
Invasive alien organisms can impact adversely on indigenous biodiversity, while riparian invasive alien trees (IATs), through shading of the habitat, can be a key threat to stream invertebrates. We ask here whether stream fauna can recover when the key threat of riparian IATs is removed. Specifically, we address whether IAT invasion, and subsequent IAT removal, changes benthic macroinvertebrate and adult dragonfly assemblages, for the worse or for the better respectively. Natural riparian zones were controls. There were statistically significant differences between stream reaches with natural, IAT-infested and IAT-cleared riparian vegetation types, based on several metrics: immature macroinvertebrate taxon richness, average score per macroinvertebrate taxon (ASPT), a macroinvertebrate subset (Ephemeroptera, Plecoptera, Trichoptera and Odonata larvae; EPTO), and adult dragonfly species richness. Reaches with natural vegetation, or cleared of IATs, supported greater relative diversity of macroinvertebrates than reaches shaded by dense IATs. Greatest macroinvertebrate ASPT and EPTO were in reaches bordered by natural vegetation and those bordered by vegetation cleared of IATs, and the lowest where the riparian corridor was IATs. Highest number of adult dragonflies species was along streams cleared of dense IATs. Overall, results showed that removal of a highly invasive, dense canopy of alien trees enables recovery of aquatic biodiversity. As benthic macroinvertebrate scores and adult dragonfly species richness are correlated and additive, their combined use is recommended for river condition assessments.  相似文献   

14.
The vegetation within the riparian zone performs animportant ecological function for in-stream processes.In Australia, riparian zones are regarded as the mostdegraded natural resource zone due to disturbancessuch as river regulation and livestock grazing. Thisstudy looks at factors influencing vegetation dynamicsof riparian tree species on two contrasting riversystems in Western Australia. The Blackwood River insouth-western Australia is influenced by aMediterranean type climate with regular seasonalwinter flows. The Ord River in north-western Australiais characterized by low winter base flows andepisodic, extreme flows influenced by monsoon rains inthe summer. For both rivers, reproductive phenology ofstudied overstory species is timed to coincide withseasonal river hydrology and rainfall. An evendistribution of size classes of trees on the BlackwoodRiver indicated recruitment into the population iscontinual and related to the regular predictableseasonal river flows and rainfall. In contrast, on theOrd River tree size class distribution was clustered,indicating episodic recruitment. On both rivers treeestablishment is also influenced by elevation abovethe river, microtopography, moisture status and soiltype. In terms of vegetation dynamics riparianvegetation on the Ord River consists of long periodsof transition with short lived stable states incontrast to the Blackwood river where tree populationstructure is characterized by long periods of stablestates with short transitions.  相似文献   

15.
Large wood and fluvial processes   总被引:12,自引:0,他引:12  
1. Large wood forms an important component of woodland river ecosystems. The relationship between large wood and the physical characteristics of river systems varies greatly with changes in the tree species of the marginal woodland, the climatic and hydrological regime, the fluvial geomorphological setting and the river and woodland management context. 2. Research on large wood and fluvial processes over the last 25 years has focussed on three main themes: the effects of wood on flow hydraulics; on the transfer of mineral and organic sediment; and on the geomorphology of river channels. 3. Analogies between wood and mineral sediment transfer processes (supply, mobility and river characteristics that affect retention) are found useful as a framework for synthesising current knowledge on large wood in rivers. 4. An important property of wood is its size when scaled to the size of the river channel. ′Small′ channels are defined as those whose width is less than the majority of wood pieces (e.g. width < median wood piece length). `Medium' channels have widths greater than the size of most wood pieces (e.g. width < upper quartile wood piece length), and `Large' channels are wider than the length of all of the wood pieces delivered to them. 5. A conceptual framework defined here for evaluating the storage and dynamics of wood in rivers ranks the relative importance of hydrological characteristics (flow regime, sediment transport regime), wood characteristics (piece size, buoyancy, morphological complexity) and geomorphological characteristics (channel width, geomorphological style) in `Small', `Medium' and `Large' rivers. 6. Wood pieces are large in comparison with river size in `small' rivers, therefore they tend to remain close to where they are delivered to the river and provide important structures in the stream, controlling rather than responding to the hydrological and sediment transfer characteristics of the river. 7. For `Medium' rivers, the combination of wood length and form becomes critical to the stability of wood within the channel. Wood accumulations form as a result of smaller or more mobile wood pieces accumulating behind key pieces. Wood transport is governed mainly by the flow regime and the buoyancy of the wood. Even quite large wood pieces may require partial burial to give them stability, so enhancing the importance of the sediment transport regime. 8. Wood dynamics in `Large' rivers vary with the geometry of the channel (slope and channel pattern), which controls the delivery, mobility and breakage of wood, and also the characteristics of the riparian zone, from where the greatest volume of wood is introduced. Wood retention depends on the channel pattern and the distribution of flow velocity. A large amount is stored at the channel margins. The greater the contact between the active channel and the forested floodplain and islands, the greater the quantity of wood that is stored.  相似文献   

16.
黄河干流河岸带植物群落特征及其影响因子分析   总被引:2,自引:0,他引:2  
作为河岸带生态系统的关键组成部分,河岸带植被为许多动植物提供了栖息地以及迁徙或扩散的廊道,并对非点源污染物有着缓冲和过滤作用。黄河是我国湿地的重要组成部分,也是生物多样性分布的关键地带。但是,目前黄河水资源的过度利用如农业灌溉和干流拦河水利工程的兴建在很大程度上改变了原有的水文情势,对河岸带植被发育带来了不利影响。另外,黄河两岸的加固硬化进一步破坏了河岸带植物的生存环境。然而,过去对于黄河河岸带植被仅有对个别河段的调查。为了解目前黄河河岸带植被现状,于2008年4-6月及2008年9-10月对黄河干流河岸带植被进行了两次系统调查,以期为黄河河岸带植被多样性的保护、河岸带的开发管理提供理论支持。对群落的物种组成、多样性进行了分析,并采用双向指示种分析法对黄河干流河岸带植被进行了数量分类。共采集到木本和草本植物169种,隶属于37科124属。区系分析表明黄河干流河岸带植被区系地理成分多样。空间分布方面,中游河段草本植物无论在种类数、密度、生物量上都较上游和下游河段丰富。TWINSPAN将植被划分为17个群落,论述了各群落的特征。环境分析表明,影响黄河干流河岸带植被空间分布的主要生态因子是海拔、年均气温、年均降雨量、年均径流量和平均最大流速。    相似文献   

17.
Riparian plants can use nitrogen (N) from soil and river water, but the use of river water N might be limited in higher floodplain environments of the Chikuma River. The purpose of this study is to reveal the relationship between N uptake by riparian plants and the floodplain topography (relative height and distance from a river channel). We examined the hypothesis that surface sediment removal from the higher floodplain increases river water N uptake by riparian plants by using a stable isotope analysis. The δ15N value of river water samples (ca. 8‰) were significantly higher than those of the soil extracts (ca. 3‰) in the study area. The δ15N value of riparian plants increased from +3.0‰ (standard deviation, SD ±2.1‰) before sediment removal to +9.6‰ (±2.1‰) after sediment removal, although there was no significant change in the δ15N value in N sources of soil and river water. The sediment removal enhanced frequency of flood disturbance, relative ground water level, and river water N uptake by riparian plants on the floodplain.  相似文献   

18.
1. The loss of input of leaf litter through clearing of riparian vegetation may result in significant changes to aquatic ecosystems. River red gums (Eucalyptus camaldulensis) surrounding floodplain wetlands in the Murray–Darling Basin, Australia, contribute large quantities of leaf litter, but the quality of this resource may change depending on the timing of inundation. 2. We used experimental mesocosms to test the hypotheses that zooplankton would have a greater abundance with an input of leaf litter and that fewer zooplankton would emerge from egg banks in cleared than forested wetlands. The experiment was carried out in summer/autumn and in spring to test a third hypothesis that zooplankton would respond to changes in the timing of wetland inundation as a result of river regulation. 3. In summer/autumn, leaf litter reduced zooplankton abundance by 89% at the beginning of the experiment through its influence on water quality. Only a few taxa (Polyarthra spp., Colurella spp. and the cladoceran Family Moinidae) responded positively to leaf litter when water quality improved later in the experiment, indicating a switch in the role of leaf litter from a non‐trophic to a trophic pathway. 4. In spring, microcrustaceans emerged in smaller numbers from sediment sourced from cleared compared to forested wetlands, reflecting different communities in these two wetland types and/or disturbances to the sediment that interfere with emergence. 5. Although leaf litter appears not to be an important resource for zooplankton in floodplain wetlands, riparian clearing may have lasting effects on future emerging zooplankton communities. Additionally, river regulation may have considerable impacts on the influence of leaf litter on zooplankton, which has implications for the management of floodplain river systems.  相似文献   

19.
20.
Changes in vegetation cover in northern Chobe National Park (Botswana) were assessed using aerial photographs from 1962, 1985 and 1998, with subsequent ground proofing. In addition, cumulative browsing by elephants and the occurrence of fire scars were recorded on random vegetation sites within shrubland (n = 20) and mixed woodland (n = 20). Coverage of woodland vegetation decreased from 60% to 30% between 1962 and 1998, while shrubland vegetation increased from 5% to 33% during the same period. During the study period, woodland has gradually retreated away from the river front. While riparian forest covered a continuous area along the riverfront in 1962, only fragments were left in 1998. We found a significant decrease in browse use with increasing distance to the Chobe river for Combretum apiculatum, Combretum elaeagnoides, Combretum mossambicense and other woody plants combined (all P < 0.0001). The occurrence of fire (P < 0.0001) and basal area (P < 0.0001) were positively related to distance to the river. Elephant browsing occurred on >70% of available stems within 2 km from the river, while less than 20% of the trees had fire scars in the same zone. Beyond 7 km from the river, elephant browsing was reduced to >50% of available stems, while more than 50% of the trees had fire scars. The density of any of the shrubs was not related to distance to the river neither within shrubland (all P > 0.05) nor within mixed woodlands (all P > 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号