首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The ability of Trichoderma reesei xylanase II (EC 3.2.1.8) to hydrolyse the small xylo-oligomer substrates, xylotetraose and xylobiose, was studied. Xylanase was used in both soluble and cross-linked enzyme crystal (CLEC) form. Hydrolysis reactions with crystalline xylanase cross-linked with glutaraldehyde and lysine were performed in a column reactor. By using appropriate combination of column packing length and flow rate, xylotetraose and xylobiose (initial concentrations 10 mg ml -1 ) were hydrolysed completely to xylose in less than 1 h. The observed reaction rate in the column depended substantially on the flow rate of the eluent, probably due to an enhanced mass-transfer with higher flow rates. With soluble xylanase, using extended reaction times of 24 h and extremely high enzyme/substrate ratios of 20 (w/w) or above, the hydrolysis reaction reached completion with both xylotetraose and xylobiose as substrates. Even with the lowest flow rate, the reaction in the column appeared to be faster than soluble enzyme hydrolysis with comparable enzyme/substrate ratios.  相似文献   

2.
Crystalline cross-linked xylose isomerase (CLXI, EC 5.3.1.5) and xylanase (CLX, EC 3.2.1.8) were studied in a packed-bed reactor for simultaneous catalytic reaction and separation of substrates from reaction products. Streptomyces rubiginosus xylose isomerase catalyzed a slow isomerization of L-arabinose to L-ribulose and an epimerization to L-ribose. In equilibrium the reaction mixture contained 52.5% arabinose, 22.5% ribulose, and 25% ribose. In a packed-bed column filled with CLXI, a simultaneous reaction and separation resulted in fractions where arabinose concentration varied between 100-0%, ribulose between 0-55%, and ribose between 0-100%. Trichoderma reesei xylanase II hydrolyzed and transferred xylotetraose mainly to xylotriose and xylobiose. In a packed-bed column filled with CLX, xylotetraose rapidly reacted to xylobiose and xylose by a mechanism that is not yet fully understood.  相似文献   

3.
The endo-1,4-beta-xylanase of the basidiomycete Schizophyllum commune, designated xylanase A, was studied to determine its action pattern, rates of reaction and bond-cleavage frequencies on xylo-oligomer and xylo-alditol substrates ranging in degree of polymerization (Dp) from xylotriose (X3) to xyloheptaose (X7). An HPLC method using a Dionex HPLC and Carbopac PA1 ion-exchange column with pulsed amperometric detection was developed to quantify both substrate loss and increase of products. Xylanase A had no detectable activity on xylobiose (X2) and low activity on xylotriose and xylotetraose (X4) but cleaved X5-X7 rapidly with X2 and X3 as major products. Initial rate data from hydrolyses of individual oligomers at 25 degrees C and pH 5.81 indicated that the Michaelis constant (Km) decreased with increasing chain length (n) of oligomer. Turnover number (kcat) increased with chain length up to n = 7 suggesting that the specificity region of xylanase A spans about seven xylose units. Bond-cleavage frequencies obtained from xylanase A hydrolysis of xylo-alditols indicated a strong preference for internal linkages of the xylose chain. The action pattern of xylanase A on reduced substrates suggests that the catalytic site is located assymetrically within the binding cleft of the enzyme.  相似文献   

4.
The xynB of a hyperthermophilic Eubacterium, Thermotoga maritima MSB8, coding xylanase B (XynB) was previously expressed in E. coli and the recombinant protein was characterized using the synthetic substrates [J. Biosci. Bioeng. 92 (2001) 423]. In this study, the same xylanase B was purified to homogeneity with a recovery yield of about 43% using heat treatment followed by the Ni-NTA affinity chromatography. The specificity of XynB towards different natural substrates was evaluated. XynB was highly specific towards xylans tested but exhibited low activities towards lichenan (19%), gellan gum (7.3%), laminarin (3.4%) and carboxymethylcellulose (CMC, 1.4%). The apparent Km values of birchwood xylan and soluble oat-spelt xylan was 0.11 and 0.079 mg/ml, respectively. The XynB hydrolyzed xylooligosaccharides to yield predominantly xylobiose (X2) and a small amount of xylose (X1), suggesting that XynB was possibly an endo-acting xylanase. Analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylose as the main degradation products. HPLC results showed that hydrolyzed products of birchwood xylan by XynB yielded up to 66% of the total reaction product as xylobiose. These results clearly indicated that xylobiose could be mass-produced efficiently by the recombinant hyperthermostable XynB of T. maritima. Additionally, conversion of xylobiose (50 mM) to xylose was observed, while xylotriose (X3) and xylotetraose (X4) were detected in small amounts, indicating that the enzyme converted xylobiose to xylose based on the transglycosylation reaction. The increased binding ability of XynB to Avicel and/or insoluble xylan was also observed indicating the possibilities of roles of surface-aromatic amino acid residues for such action. However, further investigations are required to prove this speculation.  相似文献   

5.
A novel xylanase (xylanase IV) which produces xylotetraose as the only low-molecular-weight oligosaccharide from oat spelt xylan was isolated from the culture medium of Aeromonas caviae ME-1. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the xylanase IV molecular weight was 41,000. Xylanase IV catalyzed the hydrolysis of oat spelt xylan, producing exclusively xylotetraose. The acid hydrolysate of the product gave d-xylose. The enzyme did not hydrolyze either p-nitrophenyl-(beta)-d-xyloside, small oligosaccharides (xylobiose and xylotetraose), or polysaccharides, such as starch, cellulose, carboxymethyl cellulose, laminarin, and (beta)-1,3-xylan.  相似文献   

6.
Two endoxylanases were purified from the culture medium of Trichoderma longibrachiatum. Both enzymes were highly basic, and lacked activity on carboxymethyl-cellulose. An enzyme of 21.5 kDa (xylanase A) had a specific activity of 510 U/mg protein, a Km of 0.15 mg soluble xylan/ml, possessed transglycosidase activity and generated xylobiose and xylotriose as the major endproducts from xylan or xylose oligomers. A larger enzyme of 33 kDa (xylanase B) had a specific activity of 131 U/mg protein, a Km of 0.19 mg soluble xylan/ml, lacked detectable transglycosidase activity and generated xylobiose and xylose as major endproducts from xylan and xylose oligomers. Xylotriose was the smallest oligomer attacked by both enzymes. In addition, xylotriose inhibited hydrolysis of xylopentanose by both enzymes, while xylobiose appeared to inhibit xylanase B, but not xylanase A.  相似文献   

7.
In this study, a thermostable recombinant xylanase B (XynB) from Thermotoga maritima MSB8 was immobilized on nickel-chelated Eupergit C 250L. This immobilized XynB was then used to hydrolyze the autohydrolysis explosion liquor of corncob (AELC) in a packed-bed enzyme reactor for continuous production of xylooligosaccharides, especially xylobiose. When tested in batch hydrolysis of AELC, the immobilized XynB still retained its relative activity of 92.5% after 10 cycles of hydrolysis at 90 degrees C. The immobilized XynB retained 83.6% of its initial hydrolysis activity even after 168 h of hydrolysis reaction at 90 degrees C and demonstrated a half-life time of 577.6 h (24 days) for continuous hydrolysis. HPLC showed that xylobiose (49.8%) and xylose (22.6%) were the main hydrolysis products yielded during continuous hydrolysis. Xylobiose was adsorbed on an activated charcoal column and eluted with a linear gradient of 15% (v/v) ethanol to yield xylobiose with 84.7% of recovery. Also, the purity of xylobiose was up to 97.2% as determined by HPLC. Therefore, the immobilized XynB was suitable for the efficient production of xylobiose from AELC. This is the first report on the immobilization of xylanase for xylobiose production.  相似文献   

8.
The modes of action of three xylanases (I, II and III) produced by Aspergillus niger van Tieghem on several substrates were investigated. Xylanase I possesed the strongest activity against xylooligosaccharides among the three enzymes and converted them into xylose and xylobiose. Xylanase II and III catalyzed a glycosylating reaction and produced higher polymerized xylooligosaccharides from xylotetraose or xylopentaose. Among three enzymes, xylanase II could split α1,3-arabinofuranosidic bond of arabinose-xylose mixed oligosaccharides.

In the case of hydrolysis by three xylanases on xylan and arabinoxylan, the maximum hydrolysis degree and the reaction products were compared with each other. From the results, some speculation were made concerning the modes of action of the enzymes.  相似文献   

9.
A Blanco  T Vidal  J F Colom    F I Pastor 《Applied microbiology》1995,61(12):4468-4470
Xylanase A from the recently isolated Bacillus sp. strain BP-23 was purified to homogeneity. The enzyme shows a molecular mass of 32 kDa and an isoelectric point of 9.3. Optimum temperature and pH for xylanase activity were 50 degrees C and 5.5 respectively. Xylanase A was completely inhibited by N-bromosuccinimide. The main products of birchwood xylan hydrolysis were xylotetraose and xylobiose. The enzyme was shown to facilitate chemical bleaching of pulp, generating savings of 38% in terms of chlorine dioxide consumption. The amino-terminal sequence of xylanase A has a conserved sequence of five amino acids found in xylanases from family F.  相似文献   

10.
Agricultural and forest waste products are abundant and low-cost biomass sources useful in renewable fuel energy and feedstock preparation. Hydrolysis of a major biomass component, hemicellulose, is accomplished by the action of endo-xylanases. Reaction products vary in composition and degree of polymerization as a function of both feedstock and the enzyme activities utilized, ranging from monomeric sugars to complex branched polysaccharides. The study herein describes heterologous expression in Aspergillus awamori of a ββ-(1-4) endo-xylanase isolated from the whole-genome DNA sequence of A. clavatus along with a comprehensive biochemical and functional analysis of the enzyme, including substrate preference and hydrolysis patterns. The A. clavatus xylanase promotes incomplete hydrolysis of xylan substrates resulting in xylobiose, xylotriose and xylotetraose. Incomplete degradation resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitating digestion and absorption of nutrients.  相似文献   

11.
海枣曲霉木聚糖酶降解寡聚木糖的特性   总被引:4,自引:0,他引:4  
利用滤纸层析或AcrylexP-2凝胶过滤从落叶松木聚糖硫酸水解液中分离纯化子木二糖至木五糖。采用硅胶薄层层析分析底物和产物的方法研究了海枣霉木聚糖酶降解寡聚木糖的特点。此酶作用于寡糖的最适PH为5.0,终产物为X和X2。酶作用于X3、X4及X5的相对初速度分别为1、34和400,X2几乎不被酶解,推断该酶的底物结合部位至少具有5个亚位点,在高底物浓度,低酶量,远离最适PH以及在反应初期都能检测到  相似文献   

12.
The major water-soluble arabinoxylan fraction from rye grain, containing 4-linked β- -xylopyranosyl residues of which about 43% were substituted solely at O-3 and 7% at both O-2 and O-3 with terminal - -arabinofuranosyl units, was hydrolysed to different extents using semi-purified xylanase from Trichoderma reesei. Products were fractionated on Biogel P-2 and structurally elucidated by sugar, methylation and high-field 1H-NMR analysis. Moderate hydrolysis released arabinose, xylose, xylobiose, xylotriose and xylotetraose together with xylo-oligosaccharides (DP ≥ 4) in which one or more of the residues were substituted at O-3 with a terminal arabinose unit. The xylose residues substituted with arabinose units at both O-2 and O-3 became enriched in the remaining polymeric fraction. Extensive hydrolysis with the enzyme released arabinose, xylose and xylobiose as major products together with small amounts of two oligosaccharides and a polymeric fraction. One of the oligosaccharides was identified as xylotriose in which the non-reducing end was substituted at O-2 and O-3 with terminal arabinose units and the other as xylotetraose in which one of the interjacent residues was substituted with arabinose units in the same way. The polymeric fraction contained a main chain of 4-linked xylose residues in which 60–70% of the residues were substituted at both O-2 and O-3 with arabinose units.

The semi-purified enzyme contained xylanase and arabinosidase activities which rapidly degraded un- and mono-substituted xylose residues while the degradation of double-substituted xylose residues was much slower. The results show that the mono- and double-substituted xylose residues were present in different polymers or different regions of the same polymer.  相似文献   


13.
A Bacillus spp. strain SPS-0, isolated from a hot spring in Portugal, produced an extracellular xylanase upon growth on wheat bran arabinoxylan. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange, gel filtration, and affinity chromatography. The optimum temperature and pH for activity was 75 degrees C and 6.0. Xylanase was stable up to 70 degrees C for 4 h at pH 6.0 in the presence of xylane. Xylanase was completely inhibited by the Hg(2+) ions. beta-Mercaptoethanol, dithiothreitol, and Mn(2+) stimulated the xylanase activity. The products of birchwood xylan hydrolysis were xylose, xylobiose, xylotriose, and xylotetraose. Kinetic experiments at 60 degrees C and pH 6.0 gave V(max) and K(m)values of 2420 nkat/mg and 0.7 mg/ml.  相似文献   

14.
An extracellular xylanase produced by Streptomyces matensis DW67 was purified from the culture supernatant by ammonium sulfate precipitation, ion exchange and gel filtration chromatography and characterized. The xylanase was purified to 14.5-fold to homogeneity with a recovery yield of 14.1%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of 21.2 kDa. However, it had a very low apparent molecular mass of 3.3 kDa as determined by gel filtration chromatography. The N-terminal sequence of first 15 amino acid residues was determined as ATTITTNQTGYDGMY. The optimal temperature and pH for purified xylanase was 65 °C and pH 7.0, respectively. The enzyme was stable within the pH range of 4.5–8.0 and was up to 55 °C. The xylanase showed specific activity towards different xylans and no activity towards other substrates tested. Hydrolysis of birchwood xylan by the xylanase yielded xylobiose and xylotriose as principal products. The enzyme hardly hydrolyzed xylobiose and xylotriose, but it could hydrolyze xylotetraose and xylopentaose to produce mainly xylobiose and xylotriose through transglycosylation. These unique properties of the purified xylanase make this enzyme attractive for biotechnological applications, such as bioblenching in paper and pulp industries, production of xylooligosaccharides. This is the first report of the xylanase from S. matensis.  相似文献   

15.
A xylanase from a commercial Aspergillus niger pentoglycanase was purified to homogeneity by column chromatography on Ultrogel AcA 54, SP-Sephadex, Sephadex G-50, and SP-Sephadex. The enzyme hydrolyzed xylotriose slowly to xylose and xylobiose, and xylotetraose and higher xylo-oligosaccharides rapidly to mixtures of smaller xylo-oligosaccharides, with xylobiose and xylose being the preponderant final products. The anomeric configuration of the products was inverted, in contrast to the behavior of most other carbohydrases that initially produce mixtures of oligosaccharides. This enzyme is a glycoprotein having an amino acid composition high in acidic residues. Its molecular weight is 20,800 and its isoelectric point is at pH 6.7. Optimal pH values for activity and stability are between 4 and 6 and, in a 20-min assay, maximal activity is attained at 55°.  相似文献   

16.
绵毛嗜热丝孢菌木聚糖酶的纯化与性质   总被引:2,自引:0,他引:2  
研究了绵毛嗜热丝孢菌Thermomyces lanuginosus W205胞外木聚糖酶的纯化与性质。粗酶液经硫酸铵沉淀和Q-Sepharose FF离子交换层析即可得到电泳纯木聚糖酶,回收率为46.6%,比酶活为1396.9U/mg。该酶的最适pH和最适温度分别为pH7.0和75℃,pH稳定范围为5.5-10.8,70℃处理30min残存酶活在70%以上。薄层层析结果显示该酶水解桦木木聚糖的主要产物是木二糖和木三糖,并且能够通过转糖苷作用将木三糖转化为木二糖。该木聚糖酶易于纯化并且具有较宽的pH稳定性及良好的热稳定性,具有较大的潜在工业应用价值。  相似文献   

17.
A xylanase, which produces exclusively xylobiose from oat spelt and birch xylans, was isolated from the culture medium of Aeromonas caviae ME-1. The enzyme (xylanase V) was purified by ammonium sulfate fractionation, hydrophobic interaction, and ion-exchange and gel filtration chromatographies. The homogeneity of the final preparation was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel electrofocusing. The molecular mass and isoelectric point of the xylanase were 46 kDa and 5.4, respectively. Xylanase V had a maximum activity at a pH of 6.8 and at a temperature between 30 and 37 degrees C. It was relatively stable at a pH between 5.0 and 8.6 and a temperature between 25 and 37 degrees C. When soluble birch xylan was used as the substrate, the enzyme had a K(m) and V(max) of 2 mg/ml and 182 mumol of xylose equivalent liberated . min . mg of protein, respectively. By the action of xylanase V on xylans (from oat spelt and birch), only one product corresponding to xylobiose was observed by thin-layer chromatography. The xylanase V putative product was confirmed to be xylobiose by acid and enzymatic hydrolyses. The xylanase had neither beta-xylosidase, alpha-l-arabinofuranosidase, cellulase, nor beta-1,3-xylanase activities. Xylotriose was the shortest substrate which the enzyme could attack. These findings suggest that xylanase V is a novel enzyme that cleaves a xylobiose unit from one of the ends of xylans, probably by an exomechanism.  相似文献   

18.
A gene, xynX, encoding a novel xylanase, was cloned from Aeromonas caviae ME-1. This gene encoded an enzyme that was constituted of 334 amino acid residues (38,580 Da) and was similar in sequence to Family 10 (Family F) beta-1,4 endo-xylanases. XynX produced only xylobiose and xylotetraose from birch wood xylan, and xylotriose, xylopentaose, and higher oligosaccharides were not detected in the TLC analysis. We designated it as X2/X4-forming xylanase. This enzyme does not have transglycosylation activity. These data suggested that this enzyme is a possible exo-xylanase. According to homology modeling, the enzyme has a ring-shaped (alpha/beta)8 barrel (TIM barrel) structure, typical of Family 10 endo-xylanases, with the extraordinary feature of a longer bottom-loop structure.  相似文献   

19.
An alkaline xylanase (XynWu-1) from Streptomyces sp. CSWu-1 was isolated from the Korean soil sample, purified and biochemically characterized. The extracellular xylanase was purified 4.8 fold with a 16% yield using Sephadex G-50 followed by DEAE-Sepharose (fast flow) column chromatography. The molecular mass of the enzyme was approximately 37 kDa estimated by SDS-PAGE and xylan zymography. N-terminal amino acid sequence of XynWu-1 was AINVLVAALX. The enzyme was found to be stable in a broad range of pH (7.0 ~ 13.0) and to 50°C and have an optimal pH and temperature of 11.0 and 60°C, respectively. XynWu-1 activity was found to be affected by Mn2+ ion with highest activity at 6 mM and produced xylose, xylobiose, and xylotetraose as major hydrolyzed end products. It was found to degrade agro waste materials like corncob and wheat bran by XynWu-1 (2,000 U/g) as shown by electron microscopy. As being stable in extreme alkaline pH, diverse peculiar biochemical characteristics, and ability to produce oligosaccharide shows that XynWu-1 has potential application in various bioindustries like probiotics, ethanol, etc.  相似文献   

20.
The mature peptide of Bacillus licheniformis xylanase A (BlxA) was successfully expressed in Pichia pastoris under the control of AOX1 promoter. After 96-h 0.25% methanol induction, the activity of recombinant B. licheniformis xylanase A (reBlxA) in culture supernatant was 122.9 U/mg. Enzymatic properties assays showed that the optimum temperature and pH for reBlxA were 60 degrees C and pH 6.0, respectively. When treated at 70 degrees C, pH 6.0 for 2 min, the residual activities of the reBlxA were 76%. Over 80% of reBlxA activity was retained after treatment of the enzyme by preincubation over a pH range of 5.0-9.0 for 1h at 25 degrees C. High performance liquid chromatography (HPLC) analysis revealed that xylotriose (X3) was the main hydrolysis product released from birchwood xylan and wheat bran insoluble xylan by reBlxA. The mode of action studies showed that reBlxA was an endo-acting xylanase and xylobiose (X2), xylotriose, xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6) could be hydrolyzed by it. This is the first report on the expression of reBlxA in yeast and on determining and quantifying the hydrolysis products released from xylans by reBlxA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号