首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effect of the synthetic compensatory solutes, dimethylthetin (CAS 4727-41-7) and homodeanol betaine (N, N-dimethyl-N-(2-hydroxyethyl)-N-(2 carboxyethyl) ammonium inner salt, CAS 6249-53-2), on two enzymes: lactate dehydrogenase (LDH from rabbit muscle) and a microbial lipase, was compared with that of glycine betaine, trehalose and sorbitol. When the enzyme plus 1 M solute were heated for 10 min at temperatures between 35-75°C, the temperature at which 50% of enzyme activity was lost increased most in the presence of trehalose (7.9° for LDH, 11.6° for lipase) and homodeanol betaine (10.7° for LDH, 11.0° for lipase). With both enzymes, more activity was retained at extreme temperatures in the presence of homodeanol betaine than with trehalose. Glycine betaine, dimethylthetin and sorbitol were less effective. Enzyme plus 1 M stabilizer solutions were frozen at -30°C and freeze-dried for 24 h. Trehalose was the most effective stabilizer of lactate dehydrogenase, and homodeanol betaine of lipase, during freeze-drying.  相似文献   

2.
Late embryogenesis abundant (LEA) proteins are closely associated with the tolerance of diverse stresses in organisms. To elucidate the function of group 3 LEA proteins, the soybean PM2 protein (LEA3) was expressed in E. coli and the protective function of the PM2 protein was assayed both in vivo and in vitro. The results of a spot assay and survival ratio demonstrated that the expression of the PM2 protein conferred the tolerance to the E. coli recombinant for different temperature conditions (4, −20 or 50°C) or high-salinity stresses (120 mmol/l MgCl2 or 120 mmol/l CaCl2). In addition, it was demonstrated that the in vitro addition of the PM2 protein could prevent the lactate dehydrogenase (LDH) inactivation normally induced by freeze–thaw. In the 62°C condition, the PM2 protein (1:5 mass ratio to LDH) effectively prevented the LDH thermo-denaturation by acting synergistically with trehalose (62.5 μg/ml), although the PM2 protein alone at this concentration showed little protective effect on LDH activity. Furthermore, the results showed that the PM2 protein could partially prevent the thermo-denaturation of the bacterial proteome after boiling for 2 min. Based on these results, we propose that the PM2 protein itself, or together with trehalose, conferred the tolerance to the E. coli recombinant against diverse stresses by protecting proteins and enzyme activity under low- or high- temperature conditions.  相似文献   

3.
In mineral salts medium, supplementing with betaine in combination with increased production of endogenous osmoprotectant from a second copy of the trehalose biosynthetic genes (otsBA) improved growth of E. coli and increased the MIC for xylose, glucose, sodium lactate and NaCl. With these compounds, this combination was more effective than either betaine or trehalose alone. With succinate, this combination was no more effective than betaine alone. Neither approach improved tolerance to ethanol. A combination of betaine and increased trehalose may improve strain productivity for many bioproducts by promoting growth in the presence of high sugar concentrations.  相似文献   

4.
Anaerobic degradation of betaine by marine Desulfobacterium strains   总被引:2,自引:0,他引:2  
From enrichment cultures with betaine (20 mM) and sulfate (20 mM) as the substrates and intertidal mud as an inoculum, a betaine-oxidizing, sulfate-reducing bacterium (strain PM4) was isolated. Strain PM4 was an oval to rod-shaped, Gram-negative, motile bacterium, which was able to oxidize lactate completely to CO2 and contained, during growth on betaine and sulfate, high activities of key enzymes of the acetyl CoA/CO dehydrogenase pathway (carbon monoxide dehydrogenase and formate dehydrogenase), but not of 2-oxo-glutarate dehydrogenase, a key enzyme of the citric acid cycle. On the basis of its morphological and physiological characteristics, strain PM4 was identified as a Desulfobacterium strain. Desulfobacterium PM4 grew on betaine with a doubling time of approximately 20 h at 30°C and produced N, N-dimethylglycine (in a 1:1 ratio) and sulfide as products. In this type of betaine metabolism one of the methyl groups of betaine is oxidized to CO2 and the reducing equivalents generated are used for the reduction of sulfate. Desulfobacterium autotrophicum (DSM 3382) grew also on betaine and sulfate with the formation of N,N-dimethylglycine, sulfide and CO2.  相似文献   

5.
Betaine analogues alter homocysteine metabolism in rats   总被引:2,自引:0,他引:2  
Glycine betaine supplementation lowers homocysteine levels in homocystinuria and in chronic renal failure patients through methylation catalysed by betaine-homocysteine methyltransferase (BHMT). The aim of this study was to determine the effect of glycine betaine analogues on homocysteine metabolism in Lewis rats. Glycine betaine, proline betaine, trigonelline, dimethylsulfoniopropionate (DMSP) or dimethylthetin (1.5 mmoles) was subcutaneously administered to rats fed a low betaine diet. The effect of each betaine on total plasma homocysteine and urinary and plasma betaine concentrations was monitored for 24h following administration. Baseline plasma homocysteine was 8.5 +/- micromol/l (S.E.M., n=44) and compared to controls concentrations decreased following glycine betaine (0.8+/-0.4 micromol/l, P = 0.064), DMSP (1.0+/-0.5 micromol/l, P = 0.041) and dimethylthetin (1.5 +/- 0.7micromol/l, P = 0.033) treatment, while concentrations increased following proline betaine (2.24 +/-0.7micromol/l, P = 0.002) and trigonelline (1.6 +/-0.3 micromol/l, P < 0.001) treatment. The effect of glycine betaine, DMSP and dimethylthetin on circulating homocysteine concentrations was thought to be mediated by BHMT in vivo. This hypothesis was supported by the finding that circulating glycine betaine concentrations increased following DMSP and dimethylthetin treatment. Proline betaine and trigonelline appeared to be poor BHMT substrates, being largely excreted in the urine unchanged, yet increased circulating homocysteine levels. This suggests they are inhibitors of BHMT. Urinary excretion of glycine betaine increased following treatment with all betaines, suggesting that the resorption of glycine betaine in the kidney was inhibited. The study shows that glycine betaine analogues have multiple effects on homocysteine metabolism (250).  相似文献   

6.
The isoenzymes of lactate dehydrogenase (LDH) in serum from normal pigs were studied after separation by agar gel electrophoresis with subsequent staining with a tetrazolium salt. Experiment 1. The stability of isoenzymes was investigated for 5 successive days after storage at room temperature (22°C), in the refrigerator (4°G), and once after storage for 32 days in the deep-freezer (—20°C). Greatest loss of activity was seen after storage in the refrigerator, where LDH2 and LDH3 lost most of its activity after 5 days. In LDH4 and LDH5 no loss had occurred at this time. Also at room temperature great losses were seen in LDH2 and LDH3. After storage in the deep-freezer an increase in LDH3 activity was recorded. Experiment 2. Serum samples were kept in water baths for 30 min. at 50, 53, and 56°C. A simultaneous and increasing loss in activity of LDH3, LDH4, and LDH5 was seen from 50° to 56°C. At 56° no activity was left in LDH3, LDH4, or LDH5, and only about 15 % of the original activity was present in LDH2. LDH1 showed no loss at 56°, but all activity was lost at 65°. A close correlation was found between total lactate dehydrogenase and α-hydroxybutyrate dehydrogenase activity in both experiments.  相似文献   

7.
Lactate produced by Sertoli cells plays an important role in spermatogenesis, and heat stress induces lactate production in immature boar Sertoli cells. Extracellular signaling regulated kinase 1 and 2 (ERK1/2) participates in heat stress response. However, the effect of ERK1/2 on heat stress-induced lactate production is unclear. In the present study, Sertoli cells were isolated from immature boar testis and cultured at 32 °C. Heat stress was induced in a 43 °C incubator for 30 min. Proteins and RNAs were detected by western blotting and RT-PCR, respectively. Lactate production and lactate dehydrogenase (LDH) activity were detected using commercial kits. Heat stress promoted ERK1/2 phosphorylation, showing a reducing trend with increasing recovery time. In addition, heat stress increased heat shock protein 70 (HSP70), glucose transporter 3 (GLUT3), and lactate dehydrogenase A (LDHA) expressions, enhanced LDH activity and lactate production at 2-h post-heat stress. Pretreatment with U0126 (1?×?10?6 mol/L), a highly selective inhibitor of ERK1/2 phosphorylation, reduced HSP70, GLUT3, and LDHA expressions and decreased LDH activity and lactate production. Meanwhile, ERK2 siRNA1 reduced the mRNA level of ERK2 and weakened ERK1/2 phosphorylation. Additionally, ERK2 siRNA1 reduced HSP70, GLUT3, and LHDA expressions decreased LDH activity and lactate production. Furthermore, HSP70 siRNA3 downregulated GLUT3 and LDHA expressions and decreased LDH activity and lactate production. These results show that activated ERK1/2 increases heat stress-induced lactate production by enhancing HSP70 expression to promote the expressions of molecules related to lactate production (GLUT3 and LDHA). Our study reveals a new insight in reducing the negative effect of heat stress in boars.  相似文献   

8.
The activity and thermal stability of α-amylase were studied in the presence of different concentrations of trehalose, sorbitol, sucrose and glycerol. The optimum temperature of the enzyme was found to be 50 ± 2°C. Further increase in temperature resulted in irreversible thermal inactivation of the enzyme. In the presence of cosolvents, the rate of thermal inactivation was found to be significantly reduced. The apparent thermal denaturation temperature (T m )app and activation energy (E a ) of α-amylase were found to be significantly increased in the presence of cosolvents in a concentration-dependent manner. In the presence of 40% trehalose, sorbitol, sucrose and glycerol, increments in the (T m )app were 20°C, 14°C, 13°C and 9°C, respectively. The E a of thermal denaturation of α-amylase in the presence of 20% (w/v) trehalose, sorbitol, sucrose and glycerol was found to be 126, 95, 90 and 43 kcal/mol compared with a control value of 40 kcal/mol. Intrinsic and 8-anilinonaphathalene-1-sulphonic acid (ANS) fluorescence studies indicated that thermal denaturation of the enzyme was accompanied by exposure of the hydrophobic cluster on the protein surface. Preferential interaction parameters indicated extensive hydration of the enzyme in the presence of cosolvents.  相似文献   

9.
Synaptosomes were prepared from the cerebral cortex of adult rats by a rapid technique of centrifugation in a Ficoll-sucrose discontinuous gradient. The synaptosomal fraction contained 40 per cent of the total gradient activity of acid α-naphthyl phosphatase (EC 3.1.3.2). Quantitative electron microscopy of this fraction revealed rare, typical, extrasynaptosomal dense body lysosomes. pH-activity profiles of free and Triton X-100 (total) activities were prepared for α-naphthyl phosphatase, β-glucuronidase (EC 3.2.1.31), β-galactosidase (EC 3.2.1.23), arylsulfatase (EC 3.1.6.1) and N-acetylglucosaminidase (EC 3.2.1.30). The ratios of total to free activity varied in the order: arylsulfatase > β-galactosidase > β-glucuronidase > N-acetylglucosaminidase > acid phosphohydrolase. Incubation of synaptosomal fractions at pH 5 and 37°C produced significant activation of β-galactosidase and N-acetylglucosaminidase but no activation of cryptic lactate dehydrogenase (EC 1.1.1.27). Hyposmotic suspension and subfractionation of the synaptosomal fraction produced considerable solubilization of lactate dehydrogenase, arylsulfatase and β-galactosidase but only partial liberation of α-naphthyl phosphatase, the remainder being associated with synaptosomal membrane fragments. Incomplete equilibrium sedimentation of synaptosomes in a continuous sucrose gradient (0·55-1·5 M) provided a broad lactate dehydrogenase and Na + K ATPase (EC 3.6.1.4) peak (peak I) at low sucrose densities. β-Glucuronidase, β-glucosidase and α-naphthyl phosphatase were significantly present in peak I. Conversely, N-acetylglucosaminidase, arylsulphatase and β-galactosidase were predominantly located in denser particles sedimenting through 1·2 M sucrose (peak II). Electron microscopy confirmed the heterogeneity of this second peak and the presence of numerous extrasynapto-somal dense body lysosomes.  相似文献   

10.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31), used as a coupling enzyme in the assay of the pyruvate, orthophosphate dikinase (EC 2.7.9.1) forward reaction, is a serious limiting factor for the overall rate when added at a level of 0.2–0.3 unit/ml of assay medium. Nonlimiting assay conditions are obtained by either increasing the level of the coupling enzyme to 3 units/ml or adding 6mM glucose-6-phosphate as an activator/stabilizer of phosphoenolpyruvate carboxylase.Abbreviations G-6-P glucose-6-phosphate - LDH lactate dehydrogenase - MDH malate dehydrogenase - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PVP polyvinylpyrrolidone - PPDK pyruvate, orthophosphate dikinase - U unit of enzyme activity (mol/min)  相似文献   

11.
The d - and l -forms of lactate are important fermentation metabolites produced by intestinal bacteria but are found to negatively affect mucosal barrier function and human health. Both enantiomers of lactate can be converted with acetate into the presumed beneficial butyrate by a phylogenetically related group of anaerobes, including Anaerobutyricum and Anaerostipes spp. This is a low energy yielding process with a partially unknown pathway in Anaerobutyricum and Anaerostipes spp. and hence, we sought to address this via a comparative genomics, proteomics and physiology approach. We compared growth of Anaerobutyricum soehngenii on lactate with that on sucrose and sorbitol. Comparative proteomics revealed complete pathway of butyrate formation from sucrose, sorbitol and lactate. Notably, a gene cluster, lctABCDEF was abundantly expressed when grown on lactate. This gene cluster encodes a lactate dehydrogenase (lctD), electron transport proteins A and B (lctCB), nickel-dependent racemase (lctE), lactate permease (lctF) and short-chain acyl-CoA dehydrogenase (lctG). Investigation of available genomes of intestinal bacteria revealed this new gene cluster to be highly conserved in only Anaerobutyricum and Anaerostipes spp. Present study demonstrates that A. soehngenii and several related Anaerobutyricum and Anaerostipes spp. are highly adapted for a lifestyle involving lactate plus acetate utilization in the human intestinal tract.  相似文献   

12.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

13.
Two commercially important enzymes, L-lactate dehydrogenase (LDH) and L-malate dehydrogenase (MDH) were purified simultaneously from bovine heart, on an agarose affinity adsorbent. This adsorbent bears a dye-ligand composed of an anthraquinone chlorotriazine chromophore linked to a biomimetic terminal 4-aminophenyloxanylic acid moiety. The purification protocol exploited the biomimetic affinity adsorbent, in combination with a cross-linked agarose DEAE anion-exchanger. The procedure comprised a preliminary anion-exchange first step, for the separation of the three enzyme activities, mMDH, cMDH and LDH. In the second step, that of affinity chromatography, the unbound mMDH obtained from the first step, was purified by specific elution with NAD+/sulphite (22.5-fold purification, 55% step-yield). The procedure afforded mMDH preparation of specific activity approx. 1,300?u/mg (25?°C) at 45% overall yield, free of cytoplasmic MDH, glutamic-oxaloacetic transaminase (GOT) and fumarase. The LDH activity, which, bound to the anion-exchanger during the first step, was recovered from the adsorbent in 200?mM KCl, and finally purified by biomimetic-dye affinity chromatography (NAD+/sulphite elution) and a second ion-exchange chromatography step (elution with 200?mM KCl). The LDH preparation exhibited specific activity approx. 500?u/mg at 25?°C (content of impurities: pyruvate kinase and GOT were not detected; MDH, 0.01%).  相似文献   

14.
The common route to link quinolinium and pyridinium fluorophores to biomolecules via bromoacetic acid has failed in labeling the disaccharide trehalose with N-methyl-6-oxyquinolinium betaine: the unexpected, extremely high instability of the N-carboxymethyl ester was overcome by direct N-alkylation of the quinoline derivative with trehalose triflate.  相似文献   

15.
16.
Lipoic acid is a coenzyme for pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched chain-ketoacid dehydrogenase, and the glycine cleavage system. Lipoic acid is covalently attached through an amide to the ?-amino group of specific lysine residues of these enzymes. Lipoamidase hydrolyzes the amide bond of lipoyl-N-?-lysine. Because of the difficulty in quantitating lipoic acid or lysine released by hydrolysis of lipoyl-N-?-lysine, a sensitive assay of lipoamidase activity was developed based on quantitation of lipoic acid liberated from lipoyl-?-lysine using 2,6-dibromoquinone-4-chlorimide (DBQC). This method involves acidification of the assay mixture with HCl and separation of lipoic acid from lipoyl-N-?-lysine by extraction into ethyl acetate where it can react with DBQC. This method is as sensitive as methods based on the reaction of lipoic acid with dinitrothiobenzoate and requires only a single extraction, but does not require reduction of the disulfide and the color reagent does not need to be prepared daily. Results obtained using this assay to quantitate lipoic acid released from lipoyl-N-p-aminobenzoate correlated excellently with results obtained using the Marshall–Bratton reaction to quantitatep-aminobenzoate. We have detected lipoyl-N-?-lysine hydrolysis activity that is distinct from that of biotinidase and bile salt-stimulated lipase in lymphoblasts from a patient with biotinidase deficiency. This assay can be used to measure lipoyl-N-?-lysine hydrolysis activity in tissues, especially those with little or no biotinidase activity.  相似文献   

17.
Freeze-drying is commonly used to preserve probiotics, but it could cause cell damage and loss of viability. The cryoprotectants play an important role in the conservation of viability during freeze-drying. In this study, we investigated the survival rates of Lactobacillus reuteri CICC6226 in the presence of cryoprotectants such as sucrose, trehalose, and reconstituted skim milk (RSM). In addition, we determined the activities of hexokinase (HK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and ATPases immediately following the freeze-drying. The results showed that the differences in HK and PK activities with and without the cryoprotectants during freeze-drying were not significant, but cell viability and activities of LDH and ATPase were significantly different (P<0.01) prior to and after freeze-drying. Meanwhile, the results showed that the maintenance of the membrane integrity and fluidity was improved in the presence of the 10% trehalose or 10% RSM than other treatments during freeze-drying. These results have provided direct biochemical and metabolic evidence of injured cell during freeze-drying. Freeze-drying damaged membrane structure and function of cell and inactivated enzymes (LDH and ATPases). The results imply that LDH and ATPases are key markers and could be used to evaluate the effect of cryoprotectants on viability and metabolic activities of L. reuteri CICC6226 during freeze-drying.  相似文献   

18.
Trehalose, a naturally occurring osmolyte, is considered as a universal protein stabilizer. We investigated the effect of the disaccharides, trehalose and sucrose, on the thermal stability and conformation of bromelain. To our surprise, bromelain in the presence of 1 M trehalose/sucrose was destabilized under thermal stress. The average Tm values as determined by UV spectroscopy and CD spectropolarimetry decreased by 5° and 7°C for bromelain in 1 M sucrose or trehalose solutions, respectively. The enzyme was also found to inactivate faster at 60°C in the presence of these osmolytes. The tertiary and secondary structure of bromelain undergoes small changes in the presence of sucrose/trehalose. Studies on the binding of these osmolytes with the native and the heat denatured enzyme revealed that sucrose/trehalose lead to preferential hydration of the denatured bromelain as compared to the native one, hence stabilizing more the denatured conformation. This is perhaps the first report on the destabilization of a protein by trehalose.  相似文献   

19.
Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0′ = ?190 mV excludes direct NAD+ reduction (E0′ = ?320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron‐transferring flavoprotein (Etf) that exhibited NAD+ reduction only when reduced ferredoxin (Fd2?) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin‐based electron confurcation to drive endergonic lactate oxidation with NAD+ as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0′ ≈ –500 mV) to NAD+ according to: lactate + Fd2? + 2 NAD+ → pyruvate + Fd + 2 NADH. The reduced Fd2? is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical and finally redox energy (Fd2? from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes.  相似文献   

20.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号