首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The selective enzymatic hydrolysis of 3′,5′-di-O-acetylthyidine (1) was studied. The lipases from porcine pancreas and Aspergillus niger, and pig liver esterase, all catalysed selective hydrolysis of the 5′O-acetyl group, but the lipase from Candida cylindracea catalysed selective hydrolysis of the 3′-O-acetyl group. Highest selectivity, leading to essentially pure 3′-O-acetylthymidine, was achieved using porcine pancreatic lipase in dilute solution at pH 7.5. Provision of an artificial interface in the form of polystyrene beads led to a significant increase in the rate of hydrolysis, accompanied by a marked fall in selectivity. Other changes in the hydrolysis conditions, such as raising the concentration of substrate or adding cosolvent, also led to a fall in selectivity.  相似文献   

2.
The proteolytic activity of 34 commercial lipase preparations (CLP) was determined using a labeled casein substrate. Only three CLP were free from proteolytic activity. Porcine pancreatic lipases exhibited levels of proteolytic activity comparable to or greater than that of a reference porcine trypsin. Bacterial lipases contained up to 10% of the proteolytic activity of commercial trypsin. Proteolytic activities in lipases from fungal species were present at low levels (<1% of the activity in trypsin). Among preparations of fungal origin, lipases from Aspergillus niger and Mucor javanicus were highest in proteolytic activity; Aspergillus oryzae and Pseudomonas cepacia lipases were lowest. Proteins in CLP were separated by non-denaturing PAGE; between 4 and 17 protein bands in the range &#104 6.5- &#83 200 kDa were observed. With the exception of a single pair of Rhizomucor miehei lipases, the distribution of apparent molecular weights (AMW) was unique to each preparation. Bands of caseinolytic activity in commercial lipases were visualized by applying a zymographic technique. CLP contained between 0 (P. cepacia lipases) and 6 (porcine pancreas lipase and Rhizopus oryzae lipase) discrete proteolytic bands. Common themes of proteolytic AMW emerged, including 21-23 kDa and 30-35 kDa bands.  相似文献   

3.
Summary Esterification of five- and six-membered-ring-containing alcohols catalysed by three different lipases (those from porcine pancreas, Candida cylindracea and Geotrichum candidum) was studied. Some conversions gave high stereochemical purity, but all gave low yields.  相似文献   

4.
The substrate selectivity of numerous commercially available lipases from microorganisms, plants and animal tissue towards 9-octadecenoic acids with respect to the cis/trans configuration of the CC double bond was examined by the esterification of cis- and trans-9-octadecanoic acid (oleic and elaidic acid respectively) with n-butanol in n-hexane. A great number of lipases studied, e.g. those from Pseudomonas sp., porcine pancreas or Carica papaya, were unable to discriminate between the isomeric 9-octadecenoic acids. However, lipases from Candida cylindracea and Mucor miehei catalysed the esterification of oleic acid 3–4 times faster than the corresponding reaction of elaidic acid and therefore have a high preference for the cis isomer. Of all biocatalysts examined, only recombinant lipases from Candidaantarctica favoured elaidic acid as substrate. While the preference of Candida antarctica lipase B for the trans isomer was quite low, Candida antarctica lipase A had an extraordinary substrate selectivity and its immobilized enzyme preparation [Chirazyme L-5 (3) from Boehringer] esterified elaidic acid about 15 times faster than oleic acid. Received: 29 October 1998 / Received revision: 18 December 1998 / Accepted: 21 December 1998  相似文献   

5.
Summary Various lipases have been evaluated as biocatalysts for the enrichment of -linolenic acid from a commercial fungal oil derived from Mucor sp. by selective esterification of the fungal oil fatty acids with n-butanol or by selective hydrolysis of the oil. Lipase from M. miehei (Lipozyme), as compared to lipases from Candida cylindracea, Penicillium cyclopium, and Rhizopus arrhizus, was found to be most effective in the enrichment of -linolenic acid in unesterified fatty acids upon esterification of the fungal oil fatty acids with n-butanol. Thus, the -linolenic acid content could be raised from 10.4% in the starting material to 68.8% in the unesterified fatty acids. Selective hydrolysis of the fungal oil triacyglycerols using Lipozyme resulted in about 1.5-fold enrichment of -linolenic acid in the unhydrolysed acylglycerols. Other lipases tested, such as those from P. cyclopium, C. cylindracea, R. arrhizus, Penicillium sp. (Lipase G), porcine pancreas and Chromobacterium viscosum, were also rather ineffective in the enrichment of -linolenic acid by selective hydrolysis of the fungal oil triacylglycerols. Offprint requests to: K. D. Mukherjee  相似文献   

6.
Partial hydrolysis of triacylglycerols of high-erucic-acid seed oils from white mustard (Sinapis alba), oriental mustard (Brassica juncea) and honesty (Lunaria annua), catalysed by lipases from Candida cylindracea and Geotrichum candidum, leads to enrichment of erucic acid and other very-long-chain mono-unsaturated fatty acids (VLCMFA) in the acylglycerols (mono-, di- and triacylglycerol) while the C18 fatty acids (oleic, linoleic and linolenic) are enriched in the fatty acid fraction. Partial hydrolysis of the high-erucic-acid triacylglycerols, catalysed by lipases from porcine pancreas, Chromobacterium viscosum, Rhizopus arrhizus and Rhizomucor miehei yields fatty acids with substantially higher levels of VLCMFA, as compared to the starting material, while the C18 fatty acids are enriched in the acylglycerol fraction. Lipases from Penicillium sp. and Candida antarctica are ineffective for the fractionation of either group of fatty acids. Transesterification of the high-erucic-acid triacylglycerols with ethyl, propyl or butyl acetate or with n-butanol, catalysed by the lipase from R. miehei, leads to enrichment of VLCMFA in the alkyl (ethyl, propyl or butyl) esters, whereas the C18 fatty acids are enriched in the acetylacylglycerols and acylglycerols.  相似文献   

7.
1. Colipase was purified from canine pancreatic juice and found to have certain specificity in its reaction with various pancreatic lipases. 2. This colipase will stimulate the lipolytic activities of lipases isolated from canine, bovine and porcine pancreas but not lipases from a fungus, or from human and rat pancreases. 3. Characterization of these lipases showed (a) the molecular dimension of rat lipase is very different from the other lipases; (b) the pIs of canine, porcine and bovine lipases are almost identical but different from the pIs of rat, human and Candida (a fungus) lipases; and (c) the antiserum prepared against canine lipase will also react with lipases from human, hog and cow pancreases but not with rat and Candida lipases. 4. These physical differences can explain partly the difference in reaction between the various lipases and the canine colipase.  相似文献   

8.
Semi-purified lipases from Candida rugosa, Pseudomonas cepacia and Alcaligenes sp. were chemically modified with a wide range of hydrophobic groups such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, t-butoxycarbonyl, lauroyl and acetyl moieties. The Candida rugosa lipase MY modified with the benzyloxycarbonyl group (modification ratio = 84%) brought about a 15-fold increase in enantioselectivity (E value) towards the hydrolysis of racemic butyl 2-(4-ethylphenoxy)propionate in an aqueous buffer solution, although the enzymatic activity was decreased. The origin of the enantioselectivity enhancement by chemical modification of the lipase is attributed to a significant deceleration in the initial reaction rate for the incorrectly binding enantiomer.  相似文献   

9.
The regioselective acylation of cholesteryl β-d-glucoside, at the C-6 of the glucose moiety, was achieved using microbial lipases in organic solvents. With palmitic acid as an acyl donor 81 or 63% conversions of cholesteryl glucoside to its 6′-O-palmitoyl derivative were obtained using Candida antarctica or Rhizomucor miehei enzymes, respectively. High yields (64–92%) were also obtained with fatty acids 6:0–22:0 and 16:1 (n-7). The synthesis of cholesteryl (6′-O-palmitoyl)glucoside was also achieved via transesterification, using mono-, di- and tri-palmitoylglycerols or methyl and ethyl palmitate as acyl sources. With R. miehei lipase transesterification between methyl palmitate (80 mM) and cholesteryl glucoside (1 mM) proceeded after 24 h with a nearly quantitative yield (97%).  相似文献   

10.
3′-O-Stearoylation of 6-azauridine was achieved enzymatically for the first time. Among eight commercially available lipases, that from Burkholderia cepacia displayed a 3′-regioselectivity of 80% towards the acylation of 3-hydroxyl of 6-azauridine. Using an immobilized lipase from Burkholderia cepacia, the 3′-regioselectivities of the acylations could be reversed by lengthening the aliphatic chain of the acyl donors (C2–C18). The possible reason might be the presence of the interaction between the base moiety and the acyl group.  相似文献   

11.
Fourier‐transform infrared (FT‐IR) spectroscopy was employed to investigate potential lyophilization‐induced changes in the secondary structure of lipases from Candida antarctica B and Pseudomonas cepacia. The secondary structure elements were determined by curve fitting of the amide III bands of the two lipases in the lyophilized state in KBr pellets and in solution. It was found that lyophilization decreased the α‐helix and increased the β‐sheet content. However, FT‐IR analysis of crosslinked enzyme crystals of Pseudomonas cepacia lipase also indicated an increase in the β‐sheet content, which appears despite the fact that the enzyme, being in the crystallized state, should possess native conformation. This result partially questions the suitability of FT‐IR for analysis of the structure of solid proteins, at least as far as the β‐sheet content is concerned, because it is possible that the method overestimates the β‐sheets by measuring other hydrogen‐bonded nonperiodic intermolecular structures. No significant modification was observed when lipase from Pseudomonas cepacia was lyophilized in the presence of methoxypoly(ethylene glycol). © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 545–551, 1999.  相似文献   

12.

Basidiomycetous yeasts in the genus Pseudozyma are known to produce extracellular glycolipids called mannosylerythritol lipids (MELs). Pseudozyma tsukubaensis produces a large amount of MEL-B using olive oil as the sole carbon source (> 70 g/L production). The MEL-B produced by P. tsukubaensis is a diastereomer type of MEL-B, which consists of 4-O-β-d-mannopyranosyl-(2R,3S)-erythritol as a sugar moiety, in contrast to the conventional type of MELs produced by P. antarctica, which contain 4-O-β-d mannopyranosyl-(2S,3R)-erythritol. In this study, we attempted to increase the production of the diastereomer type of MEL-B in P. tsukubaensis 1E5 by introducing the genes encoding two lipases, PaLIPAp (PaLIPA) and PaLIPBp (PaLIPB) from P. antarctica T-34. Strain 1E5 expressing PaLIPA exhibited higher lipase activity than the strain possessing an empty vector, which was used as a negative control. Strains of 1E5 expressing PaLIPA or PaLIPB showed 1.9- and 1.6-fold higher MEL-B production than the negative control strain, respectively, and oil consumption was also accelerated by the introduction of these lipase genes. MEL-B production was estimated using time course analysis in the recombinant strains. Strain 1E5 expressing PaLIPA produced 37.0 ± 1.2 g/L of MEL-B within 4 days of cultivation, whereas the strain expressing an empty vector produced 22.1 ± 7.5 g/L in this time. Overexpression of PaLIPA increased MEL-B production by P. tsukubaensis strain 1E5 from olive oil as carbon source by more than 1.7-fold.

  相似文献   

13.
Microwave-assisted rapid characterization of lipase selectivities   总被引:4,自引:0,他引:4  
A rapid screening procedure for characterization of lipase selectivities using microwaves was developed. The rate of reaction of various commercial lipases (porcine pancreas, Mucor miehei, Candida rugosa, Pseudomonas cepacia) as well as lipases from laboratory isolates-Bacillus stearothermophilus and Burkholderia cepacia RGP-10 for triolein hydrolysis was 7- to 12-fold higher in a microwave oven as compared to that by pH stat. The esterification of sucrose/methanol and ascorbic acid with different fatty acids was also achieved within 30 s in a microwave using porcine pancreas, B. stearothermophilus SB-1 and B. cepacia RGP-10 lipases. The relative rates and selectivity of the lipases both for hydrolytic and synthesis reactions remains unaltered. However, the rate of reaction was dynamically enhanced when exposed to microwaves. Microwave-assisted enzyme catalysis can become an attractive procedure for rapid characterization of large number of enzyme samples and substrates, which otherwise is a cumbersome and time-consuming exercise.  相似文献   

14.
Summary The sensitivity of twenty six microbial lipases towards acetaldehyde (an unavoidable by-product in lipase-catalysed acyl transfer reactions with vinyl esters) was investigated. The sensitivity of an individual enzyme strongly depends on its properties such as microbial source, molecular weight and relative lysine content. Whereas the majority of enzymes (from Pseudomonas, Rhizopus, Chromobacterium, Mucor and Candida antarctica sp.) proved to be remarkably stable, lipases from Candida rugosa and Geotrichum candidum lost most of their activity when exposed to acetaldehyde.  相似文献   

15.
The ability of three commercially available lipases to mediate the hydrolysis of the soybean oil to yield concentrated of essential fatty acids was evaluated. The tested lipases were from microbial (Candida rugosa and Thermomyces lanuginosa) and animal cells (Porcine pancreatic lipase). In terms of free fatty acids, microbial lipases were more effective to promote the enzymatic hydrolysis of the soybean oil (over 70%) than the porcine pancreatic lipase (24%). In spite of this, porcine pancreatic lipase (PPL) showed the most satisfactory specificity towards both essential fatty acids and was, therefore, chosen to carry out additional studies. An experimental design was performed taking into consideration the enzyme and NaCl amounts as independent variables. The main effects were fitted by multiple regression analysis to a linear model and maximum fatty acids concentration could be obtained using 3.0 wt% of lipase and 0.08 wt% of NaCl. The mathematical model representing the hydrolysis degree was found to describe adequately the experimental results. Under these conditions, concentrations of 29.5 g/L and 4.6 g/L for linoleic and linolenic acids, respectively, were obtained.  相似文献   

16.
Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).  相似文献   

17.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The lipase from Burkholderia cepacia, formerly known as Pseudomonas cepacia lipase, is a commercial enzyme in both soluble and immobilized forms widely recognized for its thermal resistance and tolerance to a large number of solvents and short‐chain alcohols. The main applications of this lipase are in transesterification reactions and in the synthesis of drugs (because of the properties mentioned above). This review intends to show the features of this enzyme and some of the most relevant aspects of its use in different synthesis reactions. Also, different immobilization techniques together with the effect of various compounds on lipase activity are presented. This lipase shows important advantages over other lipases, especially in reaction media including solvents or reactions involving short‐chain alcohols.  相似文献   

19.
Sol-gel entrapment of microbial lipases from Candida cylindracea (Cc lipase),Pseudomonas fluorescens (Lipase AK), and Pseudomonas cepacia (Lipase PS), using as precursors tetraethoxysilane (TEOS) and silanes of type R-Si(OEt)3 with alkyl or aryl R groups, has been investigated. Three different methods using these precursors were tried exhibiting protein immobilization yields in the range of 20–50%. Hydrolysis of emulsified olive oil, esterification of lauric acid with 1-octanol and enantioselective acylation of 2-pentanol have been used as model reactions for testing the properties of the encapsulated lipases. The recovery yields of the enzyme activity in the esterification reaction were between 20–68%, the best performance being achieved with phenyltriethoxysilane and tetraethoxysilane precursors at 3:1 molar ratio. When testing the entrapped Lipase AK in the enantioselective acylation reaction of 2-pentanol, activity recovery yields up to 32% related to the free enzyme were obtained and the immobilization increased the enantioselectivity of the enzyme.  相似文献   

20.
To investigate the full potential of hydrolases for the removal of two amine-protecting groups, 15 different, commercially available lipases, acylases, proteases and esterases were studied for the hydrolyses of N-acetyl and N-formyl protecting groups. In addition to the well-known acylases from porcine kidney and Aspergillus melleus, this screening revealed that porcine liver esterase and the lipases from Rhizomucor miehei and Pseudomonas stutzeri are also catalysts for the hydrolysis of N-acetylalanine. The activity of lipases in this reaction was unexpected, since lipases are commonly believed not to hydrolyse amides. In addition, from these 15 enzymes, three were found to be active in the hydrolysis of N-formylalanine, i.e. porcine liver esterase and the two acylases. This is the first example where esterase is employed to deprotect N-formyl amides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号