首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zooplankton grazing impact on algae, heterotrophic flagellates and bacteria, as well as invertebrate predation on herbivorous zooplankton, were investigated in two sub-Antarctic lakes with extremely simple food chains. The two species of herbivorous zooplankton present in the lakes (the copepods boeckella michaelseni and Pseudoboeckella poppei) exerted substantial grazing pressure on algae. However, the dominant algal species exhibited properties that enabled them to avoid (large size or extruding spines, e.g. Staurastrum sp., Tribonema sp.) or compensate (recruitment from the sediment, Mallomonas sp.) grazing. There are only two potential invertebrate predators on the herbivorous copepods in the two lakes: the copepod Parabroteas sarsi and the diving beetle Lancetes claussi. Vertebrate predators are entirely abscent from sub-Antarctic lakes. Based on our experiments, we estimated that the predators would remove at most about 0.4% of the herbivorous copepods per day, whereas planktivorous fish, if present in the lakes, would have removed 5–17% of the zooplankton each day. Consequently, the invertebrate predators in these high-latitude lakes had only a marginal predation impact compared to the predation pressure on zooplankton in the presence of vertebrate predators in temperate lakes. The study of these simple systems with only two quantitatively functionally important trophic links, suggests that high grazing pressure foreces the algal community towards forms with grazer resistant adaptations such as large size, recruitment from another habitat, and grazer avoidance spines. We propose that due to such adaptations, predictions from food web theory are only partly corroborated, i.e. algal biomass actually increases with increasing productivity, although the grazer community is released from predation. In more species-rich and complex systems, e.g temperate lakes with three functionally important links, such adaptations are likely to be even more important, and, consequently, the observable effects of trophic interactions from top predators on lower trophic levels even more obscured.  相似文献   

2.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

3.
Isolation from mammalian predators differentially affects two congeners   总被引:8,自引:2,他引:6  
Evolutionary isolation from predators can profoundly influencethe morphology, physiology, and behavior of prey, but littleis known about how species respond to the loss of only someof their predators. We studied antipredator behavior of tammarwallabies (Macropus eugenii) and western gray kangaroos (Macropusfuliginosus) on Kangaroo Island (KI), South Australia, andat Tutanning Nature Reserve on the mainland of western Australia.Both species on KI have been isolated from native mammalian predators for several thousand years. On KI, wallabies (becauseof their size) are vulnerable to diurnal aerial predators.In contrast, on the mainland both species have been exposedcontinuously to native and introduced mammalian and avian predators.At both locations, wallabies modified the amount of time they allocated to vigilance and foraging in response to group size,whereas kangaroos did so only at the higher risk Tutanningsite. Both species modified overall time budgets (they werewarier at the higher risk site), and both species modifiedspace-use patterns as a function of risk. At the higher risk site, tammars were closer to cover, whereas kangaroos were,on average, farther from cover. We hypothesize that the presenceof a single predator, even if it is active at a different timeof day, may profoundly affect the way a species responds tothe loss of other predators by maintaining certain antipredatorbehaviors. Such an effect of ancestral predators may be expected as long as species encounter some predators.  相似文献   

4.
Diel vertical migrations of zooplankton were studied in a small, dystrophic Kruczy Staw Lake. Two rotifer species (Synchaeta pectinata Ehrenberg, Trichocerca simonei DeSmet) inhabiting the lake occurred near lake bottom (7–8 m depth) in the daytime. At night they were observed in surface waters (0–2 m). Both amplitude and speed of the rotifer migration were markedly higher than those of crustaceans. As invertebrate predators are scarce or altogether lacking in the lake, vertical stratification of rotifer and crustacean communities both seasonally and dielly may be caused by strong competition for very low food resources in the lake. This assumption is supported by the observed reverse changes in densities of zooplankton and their food (i.e. picoplankton) during a diel cycle.  相似文献   

5.
1. The introduction of Salmo trutta into an artificial pond was followed by great reduction in the numbers of tadpoles, certain beetles and Notonecta, all species to be seen in the open water. Of the species that sheltered more securely in the plant cover, the effect on some was a curtailment of their range; on others there was little reduction of range or numbers, particularly the numbers at the end of a generation. This was attributed to self-regulation of numbers and the creation of a reserve from which losses due to predation by fish on larger specimens could be replenished. 2. Changes in the number of fish in stretches of a stony stream exerted little effect on the Ephemeroptera, but records indicate that Gammarus and fish are rarely numerous in the same stretch. 3. The most abundant invertebrate carnivores in the fishpond wait for prey to come to them; of two others, a leech swims well but has poor seizing organs, a caddis-larva the reverse. The amount consumed by such predators falls rapidly as the prey becomes scarce. Moreover the main source of prey for the common predators is from the small Crustacea which are abundant only in summer and reproduce quickly. This prey thus has properties that prevent much reduction of numbers by predation. 4. On the stony substrata of Lake District lakes, Asellus and Planaria are numerous where conditions are productive, Ephemeroptera and Plecoptera elsewhere. The absence of these insects from productive places is attributed to predation. 5. Planaria cannot move fast and have no efficient seizing organs, but compensate to some extent by laying trails of slime in which prey becomes entangled. As Asellus grows, its chances of being overpowered by Planaria decrease. Planaria, therefore, feed regularly only when prey is abundant. When it is scarce they rest, and they are able to withstand starvation for a long period. 6. Planaria are preyed upon extensively by Odonata, newts and Plecoptera, and the first two keep them out of weedy ponds. The last may keep their numbers low in streams and perhaps also on stony shores of unproductive lakes, though here scarcity of food is important too. In productive lakes predation on flatworms is slight. 7. Protozoa exhibit three relationships between predator and prey, two of which have been seen in larger organisms. Prey avoid predation in cover. Predators cease activity when prey becomes scarce. Prey occurs in isolated colonies which when found are destroyed by the predator, but generally not before some individuals have dispersed and founded new colonies. 8. Only small invertebrates can survive predation by fish in the open water. Many also reproduce rapidly as long as conditions are favourable and enter a resting stage when they are not. Intense predation may eliminate large species. In some ponds in the Colorado mountains salamanders eliminate a large carnivorous copepod, which enables small Cladocera to survive. Absence of the copepod and presence of Cladocera of suitable size for it to feed on enable a Chaoborus larva to co-exist with the salamander. 9. Small planktivorous fish occur in the open water of some African lakes. The great size of these lakes probably makes possible the co-existence of small fish and their predators, but also makes investigation of the relations between the two difficult. 10. When species not previously present have gained access to lakes, the numbers of the native species of fish have often been greatly reduced. The exact nature of the relationship between newcomer and native has, however, not been established because other factors have been varying, observations have been scanty, or records have not been made for long enough. 11. In temporary and very small bodies of water predation is mainly by invading individuals that were reared somewhere else. Characteristic organisms are phyllopods in impermanent pools and mosquito larvae in both types of water, two groups that feed in the open and away from cover, an activity possible only where predation is slight.  相似文献   

6.
Described are a method and apparatus that allowin situ measurement of predation on zooplankton byMysis relicta. The method, which can be generalized to other predators, involves lowering paired large-volume (30-1) plankton traps to the depth of interest, with subsequent trapping of the ambient zooplankton assemblage in each trap and release of predators into one of the traps. The statistical adequacy of the method was shown by error propagation theory to depend on the percentage of available prey consumed, on the number of prey captured by the traps, and on the distribution of zooplankton within the volume of water captured by the traps. Repeated casts of the apparatus showed that, in contrast to other studies of zooplankton distribution, various zooplankton categories were statistically underdispersed (evenly dispersed in space) or at least not more statistically dispersed (clumped) than was a random distribution at a space scale of 1 m. An error analysis of many replicated feeding experiments showed that the errors obtained were reasonably small and that they conformed with or were less than those predicted by error propagation theory that assumed random distribution of zooplankton. Thus, these results supported the practical application of the method and corroborated the conclusion of random dispersion or underdispersion drawn from the experiment of repeated casts of the apparatus.  相似文献   

7.
The energy flow in aquatic food webs and their structures are largely determined by food utilisation of predators. Mysid shrimps are important predators in various aquatic ecosystems. We studied the stomach contents of three common littoral mysids from the Baltic Sea. The aim was to study whether the diets differ between species and size classes inhabiting shallow coastal areas. The effects of season (spring, summer, autumn) and habitat were also explored. Results showed that all species were highly omnivorous, utilising various phyto- and zooplankton prey, algal filaments and dead organic material through the growing season. No ontogenetic diet shifts were observed although different size classes preferred slightly different prey. The amount of detritus increased in the diets during growth. In addition, large mysids ate more macro- and less microzooplankton compared with the small ones. There were also species-specific differences in the food utilisation. Neomysis integer ate more benthic material, Praunus flexuosus more macrozooplankton and P. inermis more phytoplankton compared with the others. These differences reflect microhabitat differences and probably also size differences of the studied species. Seasonal variation was also observed in the diets. Food utilisation followed the changes in the food availability, e.g. phytoplankton spring bloom and zooplankton peak abundances in late summer. Results confirm the omnivorous nature of mysids showing the importance of a diversity of prey as energy sources during growth.  相似文献   

8.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The largest known colony of Thin-billed prions Pachyptila belcheri has been coexisting with introduced mammals for more than 100 years. Three of the introduced mammals are potential predators of adults, eggs and chicks, namely ship rats Rattus rattus, house mice Mus musculus and feral cats Felis catus. We here determine habitat preferences over three seasons and dietary patterns of the unique set of introduced predators at New Island, Falkland Islands, with emphasis on the ship rats. Our study highlights spatial and temporal differences in the levels of interaction between predators and native seabirds. Rats and mice had a preference for areas providing cover in the form of the native tussac grass Parodiochloa flabellata or introduced gorse Ulex europaeus. Their diet differed markedly between areas, over the season and between age groups in rats. During the incubation period of the prions in November–December, ship rats had mixed diets, composed mainly of plants and mammals, while only 3% of rats had ingested birds. The proportion of ingested birds, including scavenged, increased in the prion chick-rearing period, when 60% of the rats consumed prions. We used δ13C and δ15N to compare the importance of marine-derived food between mammal species and individuals, and found that rats in all but one area took diet of partly marine origin, prions being the most frequently encountered marine food. Most house mice at New Island mainly had terrestrial diet. The stable isotope analysis of tissues with different turnover times indicated that individual rats and mice were consistent in their diet over weeks, but opportunistic in the short term. Some individuals (12% of rats and 7% of mice) were highly specialized in marine-derived food. According to the isotope ratios in a small sample of cat faeces, rodents and rabbits were the chief prey of cats at New Island. Although some individuals of all three predators supplement their terrestrial diet with marine-derived food, the current impact of predation by mammals on the large population of Thin-billed prions at New Island appears small due to a number of factors, including the small size of rodent populations and restriction mainly to small areas providing cover. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ingrid Schenk: deceased  相似文献   

10.
Summary

Methyl farnesoate (MF) expression and reproductive system size were compared in five representative groups of male L. emarginata selected from a sample collected in November. The groups differed from each other with respect to carapace size (small, intermediate and large), relative propodus size (small and large claw forms), and condition of the exoskeleton (abraded and unabraded). Large males with large claws and abraded exoskeletons had reproductive system indices which were significantly larger than any other group. The mandibular organs of these crabs also had significantly higher rates of methyl farnesoate synthesis in vitro. Hemolymph titers of methyl farnesoate were also highest in this group, but were not significantly different from the group with small carapaces, small claws and unabraded exoskeletons. Methyl farnesoate titers were significantly lower in all other groups of unabraded animals with small or large claws. These results suggest that methyl farnesoate may play a role in morphogenesis and reproduction in male L. emarginata.  相似文献   

11.
The arrangement of lateral line sense organs in 4 families of nonrelated surface feeding fishes is described. Although lateral line sense organs in these fishes show great variability they are all sensitive to surface waves. Morphological differences are emphasized and discussed functionally.  相似文献   

12.
1. Detecting the impacts of invading Bythotrephes cederstrœmi (Crustacea, Onychopoda, Cercopagididae) on zooplankton in North American lakes has been hampered by the brevity of pre-invasion data, and by the difficulty of distinguishing the effects of the invader from other stresses. The data from Harp Lake in Ontario, Canada, circumvent these difficulties. Bythotrephes appeared in the lake in 1993. There is a 15-year pre-invasion data set, and no significant complicating concurrent stresses.
2. The species composition and the size structure of the crustacean zooplankton community of Harp Lake changed after the invasion. Several small species either declined dramatically in abundance (e.g. Bosmina longirostris , Tropocyclops extensus ) or disappeared ( Chydorus sphaericus , Diaphanosoma birgei , Bosmina ( Neobosmina ) tubicen ). In contrast the abundance of the larger cladocerans Holopedium gibberum and Daphnia galeata mendotae and the hypolimnetic copepod Leptodiaptomus sicilis increased. Several univariate and all multivariate summarizations of zooplankton abundance, biomass and size structure highlighted the uniqueness of the post-invasion community.
3. The alterations in the zooplankton community could not be attributed to changes in lake acidity, thermal regimes, penetration by ultraviolet light, nutrient status, fish stocking or the abundances of native invertebrate predators, but they were correlated with Bythotrephes abundance, both within and among years. Hence, we hypothesize that the invasion by Bythotrephes has significantly altered the crustacean zooplankton community of Harp Lake.  相似文献   

13.
1. Detecting the impacts of invading Bythotrephes cederstrœmi (Crustacea, Onychopoda, Cercopagididae) on zooplankton in North American lakes has been hampered by the brevity of pre-invasion data, and by the difficulty of distinguishing the effects of the invader from other stresses. The data from Harp Lake in Ontario, Canada, circumvent these difficulties. Bythotrephes appeared in the lake in 1993. There is a 15-year pre-invasion data set, and no significant complicating concurrent stresses.
2. The species composition and the size structure of the crustacean zooplankton community of Harp Lake changed after the invasion. Several small species either declined dramatically in abundance (e.g. Bosmina longirostris , Tropocyclops extensus ) or disappeared ( Chydorus sphaericus , Diaphanosoma birgei , Bosmina ( Neobosmina ) tubicen ). In contrast the abundance of the larger cladocerans Holopedium gibberum and Daphnia galeata mendotae and the hypolimnetic copepod Leptodiaptomus sicilis increased. Several univariate and all multivariate summarizations of zooplankton abundance, biomass and size structure highlighted the uniqueness of the post-invasion community.
3. The alterations in the zooplankton community could not be attributed to changes in lake acidity, thermal regimes, penetration by ultraviolet light, nutrient status, fish stocking or the abundances of native invertebrate predators, but they were correlated with Bythotrephes abundance, both within and among years. Hence, we hypothesize that the invasion by Bythotrephes has significantly altered the crustacean zooplankton community of Harp Lake.  相似文献   

14.
Carnivorous plants are major predators of small insects in some habitats. Because traps of carnivorous plants are serious threats for small insects, it is probable to evolve a mechanism to sense a cue of carnivorous plants and avoid being trapped. However, such a sensing behavior of small insects has never been described. Here we report that a hoverfly species Sphaerophoria menthastri, a major pollinator species of carnivorous sundew Drosera toyoakensis, exhibits a behavior to sense a cue of trap leaves and avoids landing there. In a quadrat (5?m?×?5?m) where D. toyoakensis and other non-carnivorous plant species co-occur, we observed behaviors of hoverflies approaching D. toyoakensis and other plants. The numbers of approaches to trap leaves, flowers of D. toyoakensis, flowers of non-carnivorous Lysimachia fortunei and leaves of Poaceae and Cyperaceae were 9, 60, 52 and 54, respectively, and the numbers of landings to those four organs were 2, 55, 49 and 49, respectively. When S. menthastri approached trap leaves, almost all individuals successfully avoided landing there by 1 or 2 hesitation behaviors. These findings suggest that S. menthastri can sense the cue of trap leaves during an approach.  相似文献   

15.
Invertebrate zooplankton predators are generally less diverse in average species numbers in tropical than in temperate lakes and reservoirs. Predatory Copepoda which comprise the majority of limnetic predators are particularly low in species numbers in the tropics. Predatory Cladocera are confined to the North Temperate zone. Chaoborus appears to be cosmopolitan. Among Rotifera, only the cosmopolitan predator Asplanchna occurs in tropical waters while the other common limnetic carnivorous genus Ploesoma is restricted to higher latitudes. Hydracarina, and insects besides Chaoborus, are generally restricted to the littoral and appear to be more diverse in the tropics. Lakes Awasa and Zwai, Ethiopia, are almost devoid of predators in the limnetic, which is invaded by a littoral chydorid Alona diaphana. Low diversity of lake types and low production of tropical zooplankton could restrict predator diversity too. Very low diversity of invertebrate predators in the limnetic and higher diversity in the littoral may characterize tropical lakes in contrast to temperate lakes, which have more invertebrate predators in the limnetic and perhaps relatively less in the littoral. Tropical zooplankton in freshwaters, appears to be a very immature community. Hence opportunistic species can readily invade the limnetic and even dominate in isolated situations as has been shown for Alona davidi, Hydracarina and some other unconventional forms.  相似文献   

16.
Demersal zooplankton reside in or near the reef substrata and usually migrate into the water column at night. There is no single pulse of migratory activity. The zooplankton rise at variable rates throughout the night, with a peak activity usually during the second hour after sunset. This temporal pattern is a reflection of the behavior of the dominant (80–90% of night samples) cyclopoid, Oithona colcarva Bowman.Not all zooplankton taxa exhibit the same diel migratory patterns. Harpacticoids, another Oithona sp., copepod nauplii, barnacle nauplii, and appendicularians are most abundant during the day. Isopods show a peak of activity also during the second hour after sunset while polychaetes are most abundant during the first hour. The behavior of the other groups studied (the cyclopoid Corycaeus sp., other cyclopoids, ostracods, amphipods, tanaids, decapods, mysids, and chaetognaths) was less easily defined.The migration of many species in a pulse during the period of least planktivore activity and migration during the day of small species and juvenile members of larger species suggests that visual predators have an important influence on the migratory behavior of reef zooplankton.  相似文献   

17.
  1. Almost all the models so far presented assume that predators are omniscient in the sense that they always have complete information about the spatial distribution of prey abundance and its change over time. But this type of model cannot cover the situation where the prey abundance in each patch changes over time due to factors other than predation. The model with a data window and absolute criterion (SAC) here enables us to treat such situations.
  2. The strategy of non-omniscient predators can be generally devided into four procedures; collection of information, its memorization, decision of tactics and its execution. SAC involves only two tactics; to stay another time period in the patch the predator is staying presently or to move to another patch chosen at random. The choice of either one of the two tactics is made by comparing the profitability of the current patch estimated by the data window with a pre-determined absolute criterion.
  3. Three changing patterns of prey abundance are considered. In the most general pattern good patches have a higher mean profitability than poor patches, but the profitability changes cyclically in each of patches.
  4. There are only two possibilities for an optimal strategy; the “patch choice strategy” in which once the predator has taken a good patch, it tries to stay there even when the state becomes poor, and the ‘state choice strategy” in which the predator seeks for only good states in good patches. The condition for which either of the two foraging strategies is superior to the other is specified analytically.
  相似文献   

18.
Invasive planktonic crustaceans have become a prominent feature of aquatic communities worldwide, yet their effects on food webs are not well known. The Asian calanoid copepod, Pseudodiaptomus forbesi, introduced to the Columbia River Estuary approximately 15 years ago, now dominates the late-summer zooplankton community, but its use by native aquatic predators is unknown. We investigated whether three species of planktivorous fishes (chinook salmon, three-spined stickleback, and northern pikeminnow) and one species of mysid exhibited higher feeding rates on native copepods and cladocerans relative to P. forbesi by conducting `single-prey’ feeding experiments and, additionally, examined selectivity for prey types with `two-prey’ feeding experiments. In single-prey experiments individual predator species showed no difference in feeding rates on native cyclopoid copepods (Cyclopidae spp.) relative to invasive P. forbesi, though wild-collected predators exhibited higher feeding rates on cyclopoids when considered in aggregate. In two-prey experiments, chinook salmon and northern pikeminnow both strongly selected native cladocerans (Daphnia retrocurva) over P. forbesi, and moreover, northern pikeminnow selected native Cyclopidae spp. over P. forbesi. On the other hand, in two-prey experiments, chinook salmon, three-spined stickleback and mysids were non- selective with respect to feeding on native cyclopoid copepods versus P. forbesi. Our results indicate that all four native predators in the Columbia River Estuary can consume the invasive copepod, P. forbesi, but that some predators select for native zooplankton over P. forbesi, most likely due to one (or both) of two possible underlying casual mechanisms: 1) differential taxon-specific prey motility and escape responses (calanoids > cyclopoids > daphnids) or 2) the invasive status of the zooplankton prey resulting in naivety, and thus lower feeding rates, of native predators feeding on invasive prey.  相似文献   

19.
Six types of sense organs are present on the antennal flagellum of Ctenolepisma lineata pilifera: tactile hairs, trichobothria, thick-walled chemoreceptors, small thin-walled chemoreceptors and coeloconic chemoreceptors. The number, size and distribution on the antenna of each type have been recorded. The base of the tactile hair is more complex than is that of other insects examined earlier. Trichobothria, long, slender hairs that oscillate in a gentle puff of air, are an unusal feature in insects and especially so for the antenna. The two types of thin-walled chemoreceptors differ in shape, size and in the structure of their walls and internal parts. A pocket-like depression of the floor of the cavity in which the peg of the coeloconic sense organ is set has not been found in earlier studies. Its function is unknown. The axons from the sensory neurons extend along the inner surface of the antennal epidermis as a sheet of fibers lining the antennal lumen. Near the pedicel the axons leave the epidermis and join to form the antennal nerve. A few observations on sense organs on appendages other than the antennae and some notes on behavior are included.  相似文献   

20.
The avoidance of visually feeding fish has long been considered as the primary driver of diel vertical migration of zooplankton. The diurnal vertical distribution of Cyclops gr. abyssorum, Arctodiaptomus alpinus, and Daphnia gr. longispina from 13 alpine lakes with fish (Salvelinus fontinalis) and without, was compared in order to understand whether fish in transparent lakes reduce the presence of large zooplankton from the irradiated zone. We used the light level at each sampling depth and the size of each specimen as proxies of predation risk, and we tested two predictions: (P1) the relative abundance of zooplankton in the well-lit surface waters vs. the darker waters will be greater in fishless lakes; (P2) the size of zooplankton in the well-lit surface waters vs. the deeper, darker waters will be greater in fishless lakes. We did not find any evidence of the validity of P1, but we confirmed P2 for Arctodiaptomus alpinus. These results support with new field data the Transparency Regulator Hypothesis, which argues that in transparent lakes, fish predation is less important for the vertical distribution of zooplankton than ultraviolet radiation, and further suggest that zooplankton size rather than vertical distribution may be more effective against visual predators in transparent lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号