首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
The eyes and visual capacity of the naked mole-rat, Heterocephalus glaber, a subterranean rodent, were evaluated using anatomical, biochemical, and functional assays, and compared to other rodents of similar body size (mouse and gerbil). The eye is small compared to mouse, yet possesses cornea, lens, and retina with typical mammalian organization. The optic nerve cross-sectional area and fiber density are ~10% and ~50% that of gerbil, respectively. Levels per unit retinal area of 11-cis and all-trans retinal, derivatives of vitamin A associated with the visual cycle, are comparable to mouse. The corneal electroretinogram (ERG) exhibits early and late negative components that scale with flash strength; raising the body temperature of this poikilothermic animal from 30°C (normal for H. glaber ) to 37°C (normal for mouse) revealed an ERG response with typically mammalian features, but greatly attenuated and with slower kinetics. Leaving the nest chamber was a behavior correlated with light onset displayed preferentially by breeding females. Optical models of five mole-rat eyes suggest reasonable, but variable, image formation at the retina, possibly related to age. Results are consistent with amorphous light detection, possibly useful for circadian entrainment or escape behavior in the event of tunnel breeches.  相似文献   

2.
Sensory information plays a critical role in determining an animal's behavior on both proximate and evolutionary timescales. Butterflies, like many other insects, use vision extensively over their lifetimes, and yet relatively little work has been published to date on their visual capabilities. We describe the visual system of a pierid butterfly, Colias eurytheme, with the ultimate goal of better understanding its role in shaping the behavior of this animal. We made several measurements: visual field dimensions, eye surface area, interommatidial angle (Deltaphi), facet diameter (D), and eye parameter (p). C. eurytheme had a large visual field and considerable regional variation in visual acuity, as inferred by Deltaphi and D. When compared to females, males had larger eye surface areas, smaller Deltaphi, and larger D in all regions except ventrally. Both sexes had proportionally large eye surface areas compared to other butterflies. Minimum p in males was small, indicating that some regions of their eyes may operate close to the diffraction limit. Finally, we found that both eye surface area and D scaled positively, but with negative allometry to body size. We discuss the relevance of these visual characteristics to the biology and behavior of C. eurytheme.  相似文献   

3.
The structures of the uracil and thiouracils were examined using NMR spectroscopy and crystal structure data when available. The relationships between the extent of polarization and the C5-C6 bond length as well as the H5-H6 coupling constants were probed. It was found that the bond length and coupling constants correlate well with the proton affinities at the carbonyl or thiocarbonyl groups at C4 but not C2. The possible implication in the tighter binding of thiouracil based nucleotides to orotidine-5'-monophosphate decarboxylase was discussed.  相似文献   

4.
Synopsis Although planktonic marine fish larvae are often distributed in aggregations, the role of behavioral responses to environmental factors in these aggregations is not well understood. This work examines, under laboratory conditions, the influence of visual and chemical stimuli in the formation and maintenance of aggregations in walleye pollock,Theragra chalcogramma, larvae. Larvae were exposed to a horizontal gradient of light (visual stimulus), prey scent (chemical stimuli: squid/copepod and rotifer) or prey density (visual & chemical stimuli: rotifers). While larvae did not respond to prey scent, they did respond to a gradient of light or prey, which resulted in the formation and maintenance of aggregations. Larvae moved into and remained in a zone of higher light intensity (0.56 versus 0.01 mol photons m-2 s-1). Once encountering a patch of prey, larvae remained aggregated within the patch to feed. In nature, movement of walleye pollock larvae in response to selected environmental factors (e.g., gravity, light, temperature, turbulence) may serendipitously bring them into contact with prey patches, where they then could remain to feed as long as light intensity remained at or above levels necessary for feeding.  相似文献   

5.
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.  相似文献   

6.
The rapid effects of glucocorticoids on various behaviors suggest that these hormones play a role in rapidly coping with challenging situations. The variety of behaviors affected in different situations raise, however, questions regarding the specificity and roles of glucocorticoids in controlling behavior. To clarify this issue, we assessed the rapid behavioral effects of glucocorticoids in the elevated plus-maze (EPM) and the open-field (OF) tests in male rats. Both tests measure three different kinds of behavioral responses: locomotion, anxiety-like behaviors (central area and open arm exploration in the OF and EPM tests, respectively), and risk assessment (investigating aversive areas in a stretched attend posture). The acute inhibition of glucocorticoid synthesis by metyrapone decreased risk assessment but did not affect locomotion and anxiety-like behaviors. Corticosterone administration increased risk assessment, without affecting locomotion and anxiety-like behaviors. Moreover, plasma corticosterone levels measured immediately after testing strongly correlated with the intensity of risk assessment. The effects of corticosterone were rapid, as occurred even when the hormone was injected 2 min before behavioral testing. In addition, the effect was resistant to protein synthesis inhibition. These data demonstrate that glucocorticoids are able to increase specifically risk assessment behaviors by non-genomic mechanisms in two different, novelty-related, non-social challenging situations. Thus, glucocorticoids appear to rapidly induce specific behavioral adjustments to meet immediate requirements set by the challenge. These data support earlier assumptions on the role of glucocorticoids in coping, and it can be hypothesized that the rapid activation of the HPA-axis may play a role in forming coping responses.  相似文献   

7.
The way urbanization unfolds over the next few decades in the developing countries of Asia will have profound implications for sustainability. One of the more important opportunities is to guide urbanization along pathways that begin to uncouple these gains in well-being from rising levels of energy use. Increasing energy use for transport, construction, climate control in houses and offices, and industrial processes is often accompanied by increasing levels of atmospheric emissions that impact human health, ecosystem functions, and the climate system. Agriculture, forestry, and animal husbandry alter carbon stocks and fluxes as carbon dioxide, methane, and black carbon. In this article we explore how carbon management could be integrated into the development strategies of cities and urbanizing regions. In particular, we explore how changes in urban form, functions, and roles might alter the timing, aggregation, spatial distribution, and composition of carbon emissions. Our emphasis is on identifying system linkages and points of leverage. The study draws primarily on emission inventories and regional development histories carried out in the regions around the cities of Manila, Jakarta, Ho Chi Minh City, New Delhi, and Chiang Mai. We find that how urban functions, such as mobility, shelter, and food, are provided has major implications for carbon emissions, and that each function is influenced by urban form and role in distinct ways. Our case studies highlight the need for major "U-turns" in urban policy.  相似文献   

8.
Brefeldin A‐mediated inhibition of ADP ribosylation factor (Arf) GTPases and their guanine nucleotide exchange factors, Arf‐GEFs, has been a cornerstone of membrane trafficking research for many years. Brefeldin A (BFA) is relatively non‐selective inhibiting at least three targets in human cells, Golgi brefeldin A resistance factor 1 (GBF1), brefeldin A inhibited guanine nucleotide exchange factor 1 (BIG1) and brefeldin A inhibited guanine nucleotide exchange factor 2 (BIG2). Here, we show that the previously described compound Exo2 acts through inhibition of Arf‐GEF function, but causes other phenotypic changes that are not GBF1 related. We describe the engineering of Exo2 to produce LG186, a more selective, reversible inhibitor of Arf‐GEF function. Using multiple‐cell‐based assays and GBF1 mutants, our data are most consistent with LG186 acting by selective inhibition of GBF1. Unlike other Arf‐GEF and reported GBF1 inhibitors including BFA, Exo2 and Golgicide A, LG186 induces disassembly of the Golgi stack in both human and canine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号