首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为查明雌雄罗氏沼虾应对低氧胁迫的行为生理响应,设置6.46(对照)、4.48和3.27 mg·L-13种溶解氧水平,研究了雌、雄个体在胁迫6 d后肝胰脏和肌肉能量代谢酶活性及游泳和弹跳速度。结果表明: 溶解氧从6.46 mg·L-1降至4.48 mg·L-1,雌雄个体肌肉有氧代谢酶活性及游泳速度均显著下降,且雄性下降幅度小于雌性,厌氧代谢酶活性并无显著变化;溶解氧继续降至3.27 mg·L-1,雌雄个体肌肉有氧代谢酶和厌氧代谢酶活性均显著下降,肝胰脏厌氧代谢酶中的乳酸脱氢酶(LDH)活性及弹跳速度显著下降,且雌性肝胰脏LDH活性下降幅度小于雄性。雌雄罗氏沼虾游泳速度与游泳足肌肉有氧代谢酶活性呈显著正相关,弹跳速度则与腹部肌肉厌氧代谢酶活性呈显著正相关。表明罗氏沼虾可以通过降低能量代谢水平应对低氧胁迫,但这种生理调节会导致运动能力下降,雄性优先将能量分配于肌肉以满足运动,雌性则优先保障肝胰脏能量供应。  相似文献   

2.
3.
A C-type lectin-like protein was cloned and characterized from the Chinese shrimp Fenneropenaeus chinensis, and named as FcCTL. The results indicated that the full length cDNA of 859 bp had an open reading frame encoded a polypeptide of 220 amino acids with one carbohydrate-recognition domain, six conserved Cys and one key motif EPGD. The theoretical molecular weight and pI of mature protein was 25.3 kDa and 5.4. Sequence comparison of the deduced amino acid sequence of FcCTL showed varied identity of 26–34, 34, 31 and 30 % with those of F. chinensis, Portunus trituberculatus, Tetraodon nigroviridis, Penaeus monodon, respectively. qRT-PCR analysis indicated that FcCTL was expressed highest in hepatopancreas of normal shrimp, and it’s expression was up-regulated in hepatopancreas and gills post white spot syndrome virus challenge. The purified recombinant FcCTL showed higher antimicrobial activity against Gram-positive bacteria than against Gram-negative bacteria and fungi. And the hemagglutinating activity of rFcCTL could be completely inhibited by GlcNAc (5 μg/ml), LPS (2.5 μg/ml), d-galactose (100 mM) and maltose (100 mM). These data suggested that FcCTL might play an important role in shrimp immune and would be helpful to better understand the innate immunity mechanism of shrimp.  相似文献   

4.
Oxygen supply and the adaptations of animals in groundwater   总被引:5,自引:2,他引:5  
1. The first part of this review focuses on the oxygen status of natural groundwater systems (mainly porous aquifers) and hyporheic zones of streams. The second part examines the sensitivity of groundwater organisms, especially crustaceans, to low oxygen concentrations (< 3.0 mg L?1 O2). 2. Dissolved oxygen (DO) in groundwater is spatially heterogeneous at macro- (km), meso- (m) and micro- (cm) scales. This heterogeneity, an essential feature of the groundwater environment, reflects changes in sediment composition and structure, groundwater flow velocity, organic matter content, and the abundance and activity of micro-organisms. Dissolved oxygen also exhibits strong temporal changes in the hyporheic zone of streams as well as in the recharge area of aquifers, but these fluctuations should be strongly attenuated with increasing distance from the stream and the recharge zone. 3. Dissolved oxygen gradients along flow paths in groundwater systems and hyporheic zones vary over several orders of magnitude (e.g. declines of 9 × 10?5 to 1.5 ×10?2 mg L?1 O2 m?1 in confined aquifers and 2 × 10?2 to 1 mg L?1 O2 m?1 in parafluvial water). Several factors explain this strong variation. Where the water table is close to the surface, oxygen is likely to be consumed rapidly in the first few metres below the water table because of incomplete degradation of soil-generated labile dissolved organic carbon (DOC) in the vadose zone. Where the water table is far from the surface, strong oxygen depletion in the vicinity of the water table does not occur, DO being then gradually consumed as groundwater flows down the hydraulic gradient. In unconfined groundwater systems, oxygen consumption along flow paths may be compensated by down-gradient replenishment of DO, resulting either from the ingress of atmospheric oxygen or water recharge through the vadose zone. In confined groundwater systems, where replenishment of oxygen is impossible, the removal time of DO varies from a few years to more than 10 000 years, depending mainly on the organic carbon content of the sediment. Comparison of the hyporheic zones between systems also revealed strong differences in the removal time and length of underground pathways for DO. This strong variability among systems seems related to differences in contact time of water with sediment. 4. Although groundwater macro-crustaceans are much more resistant to hypoxia than epigean species, they cannot survive severe hypoxia (DO < 0.01 mg L?1 O2) for very long (lethal time for 50% of the population ranged from 46.7 to 61.7 h). In severe hypoxia, none of the hypogean crustaceans examined utilized a high-ATP yielding metabolic pathway. High survival times are mainly a result of the combination of three mechanisms: a high storage of fermentable fuels (glycogen and phosphagen), a low metabolic rate in normoxia, and a further reduction in metabolic rate by reducing locomotion and ventilation. It is suggested here that the low metabolic rate of many hypogean species may be an adaptation to low oxygen and not necessarily result from an impoverished food supply. 5. An interesting physiological feature of hypogean crustaceans is their ability to recover from anaerobic stress and, more specifically, rapidly to resynthesize glycogen stores during post-hypoxic recovery. A high storage and rapid restoration of fermentable fuels (without feeding) allows groundwater crustaceans to exploit a moving mosaic of suboxic (< 0.3 mg L?1 O2), dysoxic (0.3–3.0 mg L?1 O2) and oxic (> 3 mg L?1 O2) patches. 6. It is concluded that although hypogean animals are probably unsuited for life in extensively or permanently suboxic groundwater, they can be found in small or temporarily suboxic patches. Indeed, their adaptations to hypoxia are clearly suited for life in groundwater characterized by spatially heterogeneous or highly dynamic DO concentrations. Their capacity to survive severe hypoxia for a few days and to recover rapidly would explain partly why ecological field studies often reveal the occurrence of interstitial taxa in groundwater with a wide range of DO.  相似文献   

5.
6.
The effects of dopamine (DA) on crustacean hyperglycemic hormone (CHH) release and osmoregulation were investigated in the white shrimp Litopenaeus vannamei. Application of 2 μg of the recombinant CHH-B1His hormone or 2?×?10?6 mol L?1 of DA to intact shrimp caused an increase in the hemolymph glucose levels 1 h post-injection, suggesting that DA might stimulate hyperglycemia through CHH release from the sinus glands. This assumption was supported by similar experiments using bilaterally eyestalk-ablated shrimp. Additionally, rCHH-B1His restored the osmoregulatory capacity (OC) of shrimp under hyperosmotic conditions to basal values 2 h post-injection, whereas DA led to an OC decrease in shrimp at all sampling times. These neuroendocrine factors may be involved in the control of metabolism and osmoregulation in L. vannamei and could be important for its adaptation to different environmental conditions.  相似文献   

7.
The effects of progressive hypoxia and re-oxygenation on cardiac function, white muscle perfusion and haemoglobin saturation were investigated in anaesthetised snapper (Pagrus auratus). White muscle perfusion and haemoglobin saturation were recorded in real time using fibre optic methodology. A marked fall in heart rate (HR) was evoked when the water bath dissolved oxygen (DO) concentration decreased below 1.5 mg L−1. This bradycardia deepened over the subsequent 20 min of progressive hypoxia and noticeable arrhythmias occurred, suggesting that hypoxia had direct and severe effects on the cardiac myocytes. Perfusion to the white muscle decreased below a DO concentration of 3 mg L−1, and oxyhaemoglobin concentration decreased once the DO fell below ca. 2 mg L−1. During re-oxygenation, heart rate and white muscle perfusion increased as the DO concentration exceeded 1.9 ± 0.1 mg L−1, whereas haemoglobin saturation increased once the external DO concentration reached 2.9 mg L−1. These changes occurred in anaesthetised fish, in which sensory function must be impaired, if not abolished. As white muscle perfusion both fell and increased prior to changes in white muscle oxyhaemoglobin saturation, a local hypoxia is more likely to be the consequence than the cause of the reduced blood delivery, and changes upstream from the tail vasculature must be responsible. HR and tissue haemoglobin concentrations did increase simultaneously on re-oxygenation suggesting an increased cardiac output as the cause.  相似文献   

8.
Oxidative stress and hypoxia responses in Centropomus parallelus exposed to three different concentrations of nitrite (0, 0.5, and 10 mg L?1) were evaluated. To determinate toxicity, we used enzymatic analyses and quantifications of oxygen consumption and opercular beats under conditions of normoxia and hypoxia. There was no significant difference in GST, CAT, or GPx enzymes in the liver or in GPx in the gills. Levels of GST were altered at a concentration of 10 mg L?1 in experiment I. Experiment II displayed alterations for GST and CAT in the liver at the same concentration, indicating that exposure to nitrite does not generate differentiated activation in the body’s defense system by the production of oxidative stress enzymes. When nitrite was associated with hypoxia, there was a significant increase in both enzymatic activity and opercular beating under hypoxia in the group exposed to 10 mg L?1 nitrite compared to the control.  相似文献   

9.
Aquatic animals are naturally exposed simultaneously to environments with different concentrations of humic acid (HA) and seasonal or daily variations of dissolved oxygen (DO) levels. This study investigated the effects of simultaneous exposure to different HA and DO levels on plasma ion levels and some hematological and oxidative parameters in different tissues of silver catfish (Rhamdia quelen). The fish were exposed to 0, 2.5 or 5 mg L?1 HA for 120 h. After this period, each group was divided into two groups: normoxia and hypoxia. Exposure to the different DO levels lasted 96 h, totaling 216 h of experimentation. At the end of the experimental period, blood sampling was performed, and the fish were euthanized prior to the excision of the gills and the brain to evaluate hematological and oxidative parameters. To verify the antioxidant capacity of HA, total phenolic compounds were measured. In general, all tissues of silver catfish exposed simultaneously to hypoxia and different HA concentrations showed a reduction in lipid peroxidation levels, as well as a modulation of the antioxidant system. These effects occurred in an HA concentration-dependent manner. Thus, HA is beneficial to silver catfish exposed to hypoxia. These beneficial effects can be attributed, most likely, to the action of the different HA constituents and functional groups, including phenolic compounds, which have antioxidant properties.  相似文献   

10.
The strictly aquatic breathing Nile tilapia, Oreochromis niloticus is an extremely hypoxia-tolerant fish. To augment our understanding of the effects of hypoxia on anaerobic glycolysis in the Nile tilapia, we studied the effect of short-term for 1 day (trial 1) and long-term for 30 days (trial 2) hypoxia on a selected glycolytic enzymes activity and mRNA expression in liver and white muscle. The hypoxic oxygen concentrations used in the two trials were 2, 1, and 0.5 mg O2 L?1 for comparison with a control normoxic group 8 mg O2 L?1. The activity of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) in liver and white muscle except liver LDH decreased in trial 1 and increased in trial 2. Assessments of mRNA levels in trial 1 revealed that PFK was downregulated and LDH was upregulated in liver and white muscle, while PK fluctuated between upregulation in liver and downregulation in white muscle. Meanwhile, PK and LDH were upregulated while PFK was similar to control values in both tissues in trial 2. Comet assay results demonstrated an increase in DNA damage that was directly proportional to increasing hypoxic concentrations. This damage was more pronounced in trial 1. This suggests that the Nile tilapia cope better with long-term hypoxic conditions, possibly as an adaptive response.  相似文献   

11.
Swimming speed, angular correlation and expected displacement were measured in juvenile summer flounder Paralichthys dentatus acclimated to either oxygen saturation (c. 7·8 mg O2 l?1; saturation‐acclimated fish) or diel‐cycling hypoxia (cycling between 11·0 and 2·0 mg O2 l?1) for 10 days and subsequently exposed to more severe diel‐cycling hypoxia (cycling between 7·0 and 0·4 mg O2 l?1). Saturation‐acclimated P. dentatus exhibited an active response to declining dissolved oxygen (DO) by increasing swimming speed, angular correlation and expected displacement to peak levels at 1·4 mg O2 l?1 that were 3·5, 5·5 and 4·2 fold, respectively, greater than those at DO saturation. Diel‐cycling hypoxia‐acclimated P. dentatus also exhibited an active response to declining DO, although it was relatively less pronounced. Diel‐cycling hypoxia‐acclimated P. dentatus swimming speed, however, still doubled as DO decreased from 7·0 to 2·8 mg O2 l?1. Diel‐cycling hypoxia‐acclimated P. dentatus did not recover as well from low DO exposure as did saturation‐acclimated fish. This was reflected in their relatively more random swimming (low angular correlation between successive moves) and poor maintenance of rank order between individuals during the recovery phase. Even saturation‐acclimated P. dentatus did not resume swimming at speeds observed at saturation until DO was 4·2 mg O2 l?1. Paralichthys dentatus were very sensitive to decreasing DO, even at DO levels that were not lethal or growth limiting. This sensitivity and their poor recovery may preclude juvenile P. dentatus from using highly productive nursery habitats affected by diel‐cycling hypoxia.  相似文献   

12.
The occurrence of bottom-water hypoxia is increasing in bodies of water around the world. Hypoxia is of concern due to the way it negatively impacts lakes and estuaries at the whole ecosystem level. During 2015, we examined the influence of hypoxia on the Muskegon Lake ecosystem by collecting surface- and bottom-water nutrient samples, bacterial abundance counts, benthic fish community information, and performing profiles of chlorophyll and phycocyanin as proxies for phytoplankton and cyanobacterial growth, respectively. Several significant changes occurred in the bottom waters of the Muskegon Lake ecosystem as a result of hypoxia. Lake-wide concentrations of soluble reactive phosphorus (SRP) and total phosphorus increased with decreasing dissolved oxygen (DO). Bacterial abundance was significantly lower when DO was less than 2.2 mg L?1. Whereas there were no drastic changes in surface chlorophyll a concentration through the season, phycocyanin increased threefold during and following a series of major wind-mixing events. Phycocyanin remained elevated for over 1.5 months despite several strong wind events, suggesting that high SRP concentrations in the bottom waters may have mixed into the surface waters, sustaining the bloom. The fish assemblage in the hypolimnion also changed in association with hypoxia. Overall fish abundance, number of species, and maximum length all decreased in catch as a function of bottom DO concentrations. The link between hypoxia and wind events appears to serve as a positive feedback loop by continuing internal loading and cyanobacterial blooms in the lake, while simultaneously eroding habitat quality for benthic fish.  相似文献   

13.
Sodium erythorbate (NaE) is a common antioxidant in food processing. In this study, the abilities of NaE to reduce photosynthetic oxygen accumulation in culture medium and improve microalgal growth were evaluated using the green microalga Chlorella vulgaris and glucose as a reference. NaE (from 2.0 to 16.0 g L?1) led to a lower accumulation of dissolved oxygen (DO) in a concentration-dependent manner. A significant negative correlation (p < 0.05) between the optical density (OD680) and DO level suggested that algal growth was promoted by NaE through depleting oxygen in the medium. After 12 days of cultivation, maximum OD680 and biomass were obtained with a NaE dosage of 8.0 g L?1 (respectively, 3.99 and 6.26 times greater than in the control without NaE). Compared with this dosage group which maintained an appropriate low DO level (2 to 6 mg L?1), higher dosage groups showed relatively little growth promotion due to an insufficiency of DO (<2 mg L?1). When glucose was added into mixotrophic systems for C. vulgaris, to the same total carbon amount as NaE, DO fell rapidly to less than 2 mg L?1 owing to its greater consumption (43.9%) compared to that of NaE (16.7%). Furthermore, in the NaE treatment, the pigment contents, cell density, and algal biomass were, respectively, 4.17 to 4.44 times, 2.67 times, and 1.21 times greater than in the glucose treatment. These findings indicate that algal autotrophic growth could be enhanced effectively by NaE through the moderate control of DO.  相似文献   

14.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

15.
16.
为揭示盐肤木(Rhus chinensis)锰积累特征与耐受机制,该研究通过盆栽试验方法,分析0(CK)、1、5、10和20 mmol·L-1Mn2+胁迫对半年生盐肤木幼苗生长、生理生化特征及其锰富集特征的影响。结果表明:(1)盐肤木在Mn2+浓度为0~10 mmol·L-1条件下生长发育状况良好,且在5 mmol·L-1Mn2+处理下叶片舒展,叶片颜色较深,生长最佳,而在20 mmol·L-1Mn2+条件下部分叶片出现褐色斑点、萎蔫卷边的现象;随着Mn2+浓度的升高,盐肤木幼苗的生物量呈先升高后下降的趋势,并在5 mmol·L-1Mn2+胁迫时最高。(2)随着Mn2+浓度的升高,盐肤木叶片中光合色素含量呈先升后降的趋势,且在Mn2+浓度为5 mmol·L-1时达到峰值。(3)随着M...  相似文献   

17.
18.
19.
Anaerobic metabolism and oxygen carrying-capacity of white shrimp (Penaeus vannamei) exposed to short term (three days) and long term (two weeks) moderate hypoxia (2-2.6 mg/L) was investigated. Glucose and lactate levels in hemolymph increased under both hypoxic conditions, indicating an activation of anaerobic pathways during the two-weeks exposure period. In muscle, no differences of glucose and lactate levels were observed between the control group and the exposed groups. In animals exposed to hypoxia for two weeks, hemocyanin and copper in hemolymph were higher than in animals under normoxic conditions or exposed for three days. These results indicate that an increase in oxygen carrying-capacity in shrimp is evident only after a sustained condition of hypoxia. Copper levels in the hepatopancreas decreased in both hypoxic conditions, suggesting a mobilization of copper stores for hemocyanin synthesis. These results indicate that penaeid shrimp can tolerate moderate hypoxic conditions by physiological adaptations, such as anaerobic metabolism and increased oxygen carrying-capacity. These adaptations require an adequate dietary supply of proteins and copper for hemocyanin synthesis and of carbohydrates for anaerobic metabolism.  相似文献   

20.
This study aimed at analysing the utilization of an electronic nose (e-nose) to serve as a specific monitoring tool for anaerobic digestion process, especially for detecting organic overload. An array of non specific metal oxide semiconductor gas sensors were used to detect process faults due to organic overload events in twelve 1.8-L anaerobic semi-continuous reactors. Three different load strategies were followed: (1) a cautious organic load (1.3 gVS L?1 day?1); (2) an increasing load strategy (1.3–5.3 gVS L?1 day?1) and (3) a cautious organic load with load pulses of up to 12 gVS L?1 day?1. A first monitoring campaign was conducted with three different substrates: sucrose, maize oil and a mix of sucrose/oil during 60 days. The second campaign was run with dry sugar beet pulp for 45 days. Hotelling’s T 2 value and upper control limit to a reference set of digesters fed with a cautious OLR (1.3 gVS L?1 day?1) was used as indirect state variable of the reactors. Overload situations were identified by the e-nose apparatus with Hotelling’s T 2 values at least four times higher in magnitude than the upper control limit of 23.7. These results confirmed that the e-nose technology appeared promising for online detection of process imbalances in the domain of anaerobic digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号