首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) on the asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) to synthesize optical active ethyl 2-hydroxy-4-phenylbutyrate (EHPB) catalyzed by Saccharomyces cerevisiae was investigated. (R)-EHPB [70.4%, e.e.(R)] is obtained using ethyl ether or benzene as the solvent. The main product is (S)-EHPB [27.7%, e.e.(S)] in [BMIM][PF6]. However, in ionic liquid-water (10:1, v/v) biphasic system, the enantioselectivity of the reduction is shifted towards (R)-side, and e.e.(R) is increased from 6.6 to 82.5% with the addition of ethanol (1%, v/v). The effect of the use of [BMIM][PF6] as an additive in relatively small amounts on the reduction was also studied. We find that there is a decline in the enantioselectivity of the reduction in benzene. In addition, a decrease in the conversion of EOPB and the yield of EHPB with increasing [BMIM][PF6] concentrations occurs in either organic solvent–water biphasic systems or benzene.  相似文献   

2.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-EHPB], a useful intermediate for the synthesis of various anti-hypertension drugs, was produced via microbial reduction of ethyl 2-oxo-4-phenylbutanoate [EOPB] in an interface bioreactor. Rhodotorula minuta IFO 0920 and Candida holmii KPY 12402 were selected as the best type culture and isolated yeasts, respectively. The highest enantiomeric excess of (R)-EHPB produced by R. minuta and C. holmii were 95 and 94%, respectively. C. holmii was used for the reduction of EOPB in a pad-packed interface bioreactor (inner volume, 3 liter). After incubation for 4 days, 4.4 g of (R)-EHPB was obtained via extraction with methanol followed by column chromatography. The overall yield, chemical purity, and enantiomeric excess of (R)-EHPB were 58%, 99.1%, and 90%, respectively.  相似文献   

3.
Summary Enzyme-catalysed hydrolysis of esters of 4-hydroxy-3-methyl-2-(2-propynyl)-cyclopent-2-enone (HMPC) was examined for the preparation of the optically pure alcohol moiety of synthetic pyrethroids. Among microorganisms and lipases tested, some bacterial lipases hydrolysed the ester of HMPC with high enantioselectivity and high reaction rate. Arthrobacter lipase gave the optically pure (R)-HMPC at 50% hydrolysis in a two-liquid phase reaction system of water and the insoluble substrate. The hydrolysis proceeded even at a substrate concentration of 80w/v%. The enantioselectivity was not changed with the chain length of the acid moiety of the esters. By combination of the enzymatic resolution with a chemical inversion of the (R)-alcohol, an efficient proess was developed for the total conversion of racemic HMPC to (S)-HMPC, which is an important alcohol for preparation of an insecticidallyactive synthetic pyrethroid.Biological preparation of an optically active alcohol. Part I  相似文献   

4.
Summary Increased reaction rates and increased enantioselectivities were observed with decreased concentrations of n-alkanols when resolving 2-methyldecanoic acid by esterification catalysed by immobilised lipase from Candida rugosa at controlled water activities in cyclohexane. The enantioselectivity was found to be independent of the water activity in the reaction medium at the n-heptanol concentrations investigated. However, when n-decanol was used as the acyl acceptor, not only the alcohol concentration but also the water activity in the reaction medium, influenced the enantioselectivity. The results obtained showed that the low enantioselectivity seen at a high alcohol concentration could be explained by the alcohol influencing the apparent V max S and V max R differently.  相似文献   

5.
A simple two-step purification method for chloroperoxidase from Caldariomyces fumago has been developed. After filtration of the mycelium the enzyme was bound to a DEAE Sepharose fast flow column. The enzyme was eluted with a 20–200 mM phosphate buffer, pH=5.8. After gel filtration on a Superose 12 HPLC column pure enzyme was obtained. Instead of gel filtration it was also possible to purify the enzyme by concentration over a membrane filter, 10 K cutoff. Concentration to 8% of the original volume yielded an enzyme preparation with Rz=1.31b in 77% yield. The enzyme was active in t-butyl alcohol/water mixtures up to 70% t-butyl alcohol. The sulfoxidation of thioanisole proceeded readily (conversion > 99%) and with high enantioselectivity (>99%) in t-butyl alochol/water mixtures.  相似文献   

6.
Abstract

Oenococcus oeni CECT4730, which catalyses the asymmetric reduction of 2-octanone to (R)-2-octanol with high enantioselectivity, was further studied to exploit its potential for production of (R)-2-octanol in an aqueous/organic solvent biphasic system. Variables such as the volume ratio of aqueous to organic phase (Va/Vo), buffer pH, reaction temperature, shaking speed, co-substrates and the ratio of biocatalyst to substrate were examined with respect to the molar conversion, the initial reaction rate and the product enantiomeric excess (e.e.). Under the optimized conditions (Va/Vo=1:1 (v/v), buffer pH=8.0, reaction temperature=30°C, shaking speed=150 rev/min, ratio of glucose to biomass=5.4:l (w/w), ratio of biocatalyst to substrate=0.51:l (g/mol)), the highest space time yield of (R)-2-octanol, 24 mmol L?1 per h, and >98% product e.e. were obtained at a substrate concentration close to 1.0 mol L?1 after 24 h reduction.  相似文献   

7.
The activity of a lipase from a newly isolated Pseudomonas sp. was investigated in the presence of organic solvents and imidazolium chloride‐based ionic liquids (IL) such as BMIM[Cl] and HMIM[Cl]. The lipase activity in the presence of IL was higher compared to that in common organic solvents such as methanol and 2‐propanol. A possible explanation for the enzyme activation might be the structural changes induced in the protein in organic systems. Since IL quench the intensity of fluorescence emission, it was not possible to investigate the major factor that influences the enzyme behavior in these new organic salts. Furthermore, the enzyme exhibited excellent activity in buffer mixtures containing both organic solvent and IL. The stability of the lipase at 50°C was considerably increased in the presence of 20% BMIM[Cl] compared with the untreated lipase in aqueous medium. The light scattering method clearly showed that prevention of aggregation could be the reason for thermal stabilization at 50°C in reactions containing IL. Kinetic analysis of the enzyme in the presence of different concentrations of IL showed that the Km value increased from 0.45 mM in aqueous buffer to 2.4 mM in 50% v/v BMIM[Cl]/buffer. The increase in Km indicates that IL can significantly reduce the binding affinity of the substrate to the enzyme. Also, a linear correlation was observed between the BMIM[Cl] concentration and Vmax of the enzyme. As the concentration of BMIM[Cl] increased from 10 to 50% v/v, the Vmax value increased from 1.8 to 46 μM/min.  相似文献   

8.
An efficient simultaneous synthesis of enantiopure (S)-amino acids and chiral (R)-amines was achieved using α/ω-aminotransferase (α/ω-AT) coupling reaction with two-liquid phase system. As, among the enzyme components in the α/ω-AT coupling reaction systems, only ω-AT is severely hampered by product inhibition by ketone product, the coupled reaction cannot be carried out above 60 mM substrates. To overcome this problem, a two-liquid phase reaction was chosen, where dioctylphthalate was selected as the solvent based upon biocompatibility, partition coefficient and effect on enzyme activity. Using 100 mM of substrates, the AroAT/ω-AT and the AlaAT/ω-AT coupling reactions asymmetrically synthesized (S)-phenylalanine and (S)-2-aminobutyrate with 93% (>99% eeS) and 95% (>99% eeS) of conversion yield, and resolved the racemic α-methylbenzylamine with 56% (95% eeR) and 54% (96% eeR) of conversion yield, respectively. Moreover, using 300 mM of 2-oxobutyrate and 300 mM of racemic α-methylbenzylamine as substrates, the coupling reactions yielded 276 mM of (S)-2-aminobutyrate (>99% ee) and 144 mM of (R)-α-methylbenzylamine (>96% ee) in 9 h. Here, most of the reactions take place in the aqueous phase, and acetophenone mainly moved to the organic phase according to its partition coefficient.  相似文献   

9.
Papain-mediated asymmetric hydrolysis of D,L-p-hydroxyphenylglycine methyl ester (D,L-HPGME) was examined in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM·BF4) and different solvents. The activity of the enzyme varied widely with change in BMIM·BF4 concentration, with 12.5% (v/v) being the optimum BMIM·BF4 concentration for the reaction. Papain displayed much higher hydrolytic activity and enantioselectivity in phosphate buffer solution of 12.5% (v/v) BMIM·BF4 (pH 7.0) than in other media examined. Comparative studies on the kinetics and activation energy (Ea) of this reaction performed in different media showed a higher Vmax, a lower Km and a lower Ea for the reaction taking place in phosphate buffer solution of 12.5% (v/v) BMIM·BF4 than in other media tested. The stability of papain at 45°C was considerably enhanced in BMIM·BF4 as compared with aqueous buffer, 2-propanol and acetonitrile. A half-life time of 169 h was observed with BMIM·BF4 in the presence of substrate, which was 9.2–16.8-fold higher than those with the other solvents. These results suggested that BMIM·BF4 is an excellent reaction medium for this reaction.  相似文献   

10.
Ethyl(R)-4-chloro-3-hydroxybutanoate ((R)-CHBE) are obtained by cetyltrimetylammonium bromide (CTAB) permeabilized fresh brewer’s yeast whole cells bioconversion of ethyl 4-chloro-3-oxobutanoate (COBE ) in the presence of allyl bromide. The results showed that the activities of alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) in CTAB permeabilized brewer’s yeast cells increased 525 and 7.9-fold, respectively, compared with that in the nonpermeabilized cells and had high enantioselectivity to convert COBE to (R)-CHBE. As one of co-substrates, glucose-6-phosphate was preprepared using glucose phosphorylation by hexokinase-catalyzed of CTAB permeabilized brewer’s yeast cells. In a two phase reaction system with n-butyl acetate as organic solvent and with 2-propanol and glucose-6-phosphate as co-substrates, the highest (R)-CHBE concentration of 447 mM was obtained with 110–130 g/l of the CTAB permeabilized cells at optimized pH, temperature, feeding rate and the shake speed of 125 r/min. The yield and enantiomeric excess (ee) of (R)-CHBE reached 99.5 and 99%, respectively, within 6 h.  相似文献   

11.
The moderate enantioselectivity of wild form baker's yeast can be considerably increased either by using continuous feeding to maintain a low substrate concentration throughout the reaction, or by the selective inhibition of competing enzymatic pathways. The reduction of ethyl 3‐oxobutyrate to ethyl (S)‐3‐hydroxybutyrate was used as a model reaction. With the substrate feeding method, the enantioselectivity could be increased from 75 % to as high as 98 %. The increased selectivity originates from the much higher substrate binding constant of the (R)‐specific enzymes, so that these enzymes remain essentially inactive if a low concentration of ethyl 3‐oxobutyrate is maintained in the bioreactor. Alternatively, the enantioselectivity of baker's yeast can be improved by selectively blocking competing enzymatic pathways. It was found that vinyl acetate is a selective inhibitor for the (R)‐specific enzymes. Ethyl (S)‐3‐hydroxybutyrate with an enantiomeric excess of 98 % was obtained by pre‐incubation of baker's yeast in 100 mM of vinyl acetate solution for 1 h. These results suggest that by selecting appropriate process conditions, natural baker's yeast can be a competitive biocatalyst for the large‐scale production of chiral secondary alcohols.  相似文献   

12.
Fluoxetine is used clinically as a racemic mixture of (+)‐(S) and (–)‐(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose‐only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10‐mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC‐MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)‐(S)‐fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC(+)‐(S)/(–)‐(R) = 1.68). In animals exposed to gasoline, we observed an increase in AUC0‐∞ for both enantiomers, with a sharper increase seen for the (–)‐(R)‐fluoxetine enantiomer (enantiomeric ratio AUC(+)‐(S)/(–)‐(R) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (–)‐(R)‐fluoxetine enantiomer (55% vs. 30%). Chirality 25:206–210, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
On photoautotrophically grown, suspension-cultured cells of Chenopodium rubrum L. the electrical potential difference V mand the electrical resistance across plasmalemma and tonoplast have been measured using one or two intracellular micro-electrodes. In a mineral test-medium of 5.8 mM ionic strength V mvalues between 100 and 250 mV, 40% thereof between 170 and 200 mV, and a mean value (±S.E.M.) of 180.6±3.4 mV have been recorded. The average membrane input resistance R mwas 269±36 M, corresponding to an average membrane resistivity r mof 3.0 m2. V mand r mare sensitive to light, temperature, and addition of cyanide, suggesting the presence of an electrogenic hyperpolarizing ion pump, and are ascribed essentially to the plasmalemma. A hexose-specific saturable electrogenic membrane channel is identified through a decrease of V mand r mupon addition of hexoses. The hexoseconcentration-dependent depolarization V msaturates at 92 mV and returns half-saturating concentrations (apparent k mvalues) of 0.16 mM galactose, 0.28 mM glucose, and 0.48 mM fructose. The magnitude of V mand r mwell agrees with pertinent data from mesophyll cells in situ (where only V mdata are available) and from photoautotrophic lower plant cells. However, V mis markedly higher than reported for heterotrophically grown suspension cells of different higher plants (with which r mdata have not been reported so far). It is concluded from the present study and a companion paper on water transport (Büchner et al., Planta, in press) that photoautotrophically grown Chenopodium suspension cells closely resemble mesophyll cells as to cell membrane transport properties.Abbreviations V m membrane potential(mV) - R o input resistance () - R m membrane input resistance () - r m specific resistance (resistivity) of the membrane (m2)  相似文献   

14.
Rhodococcus erythropolis AJ270 metabolizes a wide range of nitriles via the two-step nitrile hydratase/amidase pathway. In this study, an amidase gene from R. erythropolis AJ270 was cloned and expressed in Escherichia coli BL21 (DE3). The activity reached the highest level of 22.04 U/ml in a complex auto-inducing medium using a simplified process of fermentation operation. The recombinant amidase was purified to more than 95% from the crude lysate using Ni-NTA affinity chromatography and Superose S10-300 gel filtration. The V max and K m values of the purified enzyme with acetamide (50 mM) were 6.89 μmol/min/mg protein and 4.12 mM, respectively, which are similar to those of the enzyme from the wild-type cell. The enzyme converted racemic α-substituted amides, O-benzylated β-hydroxy amides, and N-benzylated β-amino amides to the corresponding (S)-acids with remarkably high enantioselectivity. The ionic liquid [BMIm][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) enhanced the activity by 1.5-fold compared with water. The adequate expression of the enzyme and excellent enantioselectivity of the recombinant amidase to a broad spectrum of amides suggest that the enzyme has prospective industrial-scale practical applications in pharmaceutical chemistry.  相似文献   

15.
Kinetic studies of cholesterol oxidase-catalysed oxidation of cholesterol in water/2-propanol mixtures showed a decrease of V max/K m values on the increase of concentration of the organic co-solvent. Addition of 18-crown-6 to the reaction medium results in an increase of V max up to 16 times, and V max/K m up to 8.4 times, enhancing the activity of cholesterol oxidase in 2-propanol/water (88:12 v/v) to 3.5 times compared to the level observed in 46% 2-propanol.  相似文献   

16.
A nitrilase gene from Alcaligenes sp. ECU0401 was cloned and overexpressed in Escherichia coli BL21 (DE3) in a soluble form. The encoded protein with a His6-tag was purified to nearly homogeneity as revealed by SDS-PAGE with a molecular weight of approximately 38.5 kDa, and the holoenzyme was estimated to be composed of 10 subunits of identical size by size exclusion chromatography. The V max and K m parameters were determined to be 27.9 μmol min−1 mg−1 protein and 21.8 mM, respectively, with mandelonitrile as the substrate. The purified enzyme was highly thermostable with a half life of 155 h at 30 °C and 94 h at 40 °C. Racemic mandelonitrile (50 mM) could be enantioselectively hydrolyzed to (R)-(−)-mandelic acid by the purified nitrilase with an enantiomeric excess of 97%. The extreme stability, high activity and enantioselectivity of this nitrilase provide a solid base for its practical application in the production of (R)-(−)-mandelic acid.  相似文献   

17.
(R)-2-Phenylpropanoic acid was synthesized from the racemic acid through an isomerization reaction involving resting cells of Nocardia diaphanozonaria JCM3208. The isomerization activity of the cells was enhanced 25-fold by adding 5.5 mM racemic 2-phenylpropanoic acid to the culture medium. When 5 mM racemic 2-phenylpropanoic acid was included in the reaction mixture (4 ml) containing resting cells (100 mg dry cell wt) in 25 mM K2HPO4/KH2PO4 buffer (pH 7.0) at 30 °C for 8 h, 4.56 mM (R)-2-phenylpropanoic acid (95.8% e.e.) was formed with a 91% molar conversion yield.  相似文献   

18.
A protein complex (PC) suspension exhibits asymmetric biooxidation activities in the absence of any added cofactor such as NAD(P)+ or FAD. It can be extracted from pea protein (PP)‐gel (PP encapsulated with Ca2+ alginate gel and aerated in air for several hours) using hot water by rotary shaking and powdered by the following three steps: (1) forming precipitates from the suspension using 30% (w/v) aqueous (NH4)2SO4, (2) crosslinking the precipitates with 0.25% (v/v) GA, and (3) preparing the cross‐linked powder by freeze‐drying. The cross‐linked PC (CLPC) performed asymmetric oxidation of the toward (R)‐isomers of rac‐ 1 and rac ‐2 in 50 mM glycine–NaOH (pH 9.0) buffer/DMSO cosolvent [2.07% (v/v)] with high enantioselectivity; thus, the (S)‐isomers can be obtained in greater than 99% ee from the corresponding racp‐substituted naphthyl methyl carbinol (rac‐ 1 and rac ‐2 ). The CLPC activity was not only competitively inhibited by addition of either 1.0 mM ZnCl2 or a chelating agent such as 1.0 mM EDTA but also denatured by pretreatments: autoclaving at 121°C (20 min) or using 6.0 M guanidine–HCl containing 50 mM DTT. These results indicated that the PC catalytic process may utilize an electron transfer system incorporating a redox cation (e.g., Fe2+ ? Fe3+ or Zn). Therefore, the newly introduced CLPC can asymmetrically oxidize the substrates without the addition of any cofactor resulting in a low‐cost organic method. Overall, our results show that the CLPC is an easily prepared, low‐cost reagent that can function under mild conditions and afford stereoselectivity, regioselectivity, and substrate specificity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 953–961, 2012  相似文献   

19.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

20.
Wet cells of Nocardia fusca AKU 2123 are good catalysts for the production of (R)-3-pentyn-2-ol (PYOH) from (RS)-PYOH through a stereoinversion reaction. Under optimal conditions (350 mM potassium phosphate buffer, pH 8.0, 30% (w/v) wet cells, 0.12% NADPH, 10% glucose, and 30 U/ml glucose dehydrogenase) (R)-PYOH of high optical purity (98.7% e.e.) was produced from 2% (v/v) (RS)-PYOH with a yield of 70.4% by 140 h incubation. Received: 22 January 1999 / Received revision: 23 April 1999 / Accepted: 1 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号