首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allele frequencies at ten polymorphic loci are described from 31 Bufo marinus populations in the Moreton Bay region in southeastern Queensland, Australia and the variation of these is found to be non-random in all cases. The pattern of non-randomness varies among loci, being clinal in two instances. The allele frequencies at the same ten loci are also described for 12 populations sampled from throughout B. marinus' Australian range. The frequency variation on this larger geographical scale is non-random at all but two loci (Mpi and Hbdh) and also varies among loci, in this case being clinal in four instances. In both cases, the patterns of variation are most reasonably explained as having resulted from genetic drift occurring during the recent range expansion which B. marinus is known to have experienced in Australia. It seems that natural selection has played little, if any, role in generating the observed gene frequency patterns. These results emphasize the need for caution in interpreting geographical patterns of variation. They show that even when clinal patterns exist at some loci but not at others, one cannot conclude that the patterns result from natural selection, unless the demographic histories of the studied populations are known and are inconsistent with the alternative hypothesis that the patterns result from genetic drift.  相似文献   

2.
An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long‐ and short‐term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre‐date the effects of recent drift, and that functional variation in these loci persists despite small short‐term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of “drift debt,” a nonequilibrium state where present‐day levels of variation overestimate the amount of functional genetic diversity present in future populations.  相似文献   

3.
Tuatara (Sphenodon spp) populations are restricted to 35 offshore islands in the Hauraki Gulf, Bay of Plenty and Cook Strait of New Zealand. Low levels of genetic variation have previously been revealed by allozyme and mtDNA analyses. In this new study, we show that six polymorphic microsatellite loci display high levels of genetic variation in 14 populations across the geographic range of tuatara. These populations are characterised by disjunct allele frequency spectra with high numbers of private alleles. High F ST (0.26) values indicate marked population structure and assignment tests allocate 96% of all individuals to their source populations. These genetic data confirm that islands support genetically distinct populations. Principal component analysis and allelic sequence data supplied information about genetic relationships between populations. Low numbers of rare alleles and low allelic richness identified populations with reduced genetic diversity. Little Barrier Island has very low numbers of old tuatara which have retained some relictual diversity. North Brother Island’s tuatara population is inbred with fixed alleles at 5 of the 6 loci.  相似文献   

4.
Surveys of genetic population structure are often limited to large geographic scales because geographically close populations are indistinguishable. Genetic uniformity across adjacent demes can be interpreted as evidence for cohesion (panmixia) or recent divergence. However, poor genetic resolution at microgeographic scales can also arise from the use of overly conservative (slowly evolving) markers. This study examines the ability of hypervariable, minisatellite loci to discriminate among geographically close populations of Savannah sparrows (Passerculus sandwichensis) and to track morphological differentiation at a microgeographic scale (interregional distance < 55 km). Savannah sparrows breeding at five island and two mainland sites in the Bay of Fundy, New Brunswick, Canada, show concordant patterns of variation in external morphology (seven characters) and multilocus DNA fingerprinting profiles (Sxy): island sparrows are phenotypically larger and genetically more similar to each other than they are to mainland sparrows. This pattern of variation is consistent with both adaptive (natural selection) and nonadaptive (genetic drift) mechanisms of population divergence. Based on minisatellite diversity, the effective size of both island and mainland populations is 37, an estimate substantially lower than census population sizes. These data are discordant with observations of sparrow vagility and abundance and suggest a closer examination of microgeographic patterns in avian systems.  相似文献   

5.
Seven polymorphic microsatellite loci were characterized in the marine encrusting sponge Crambe crambe from a partial genomic DNA‐enriched library. Preliminary data on allelic variation of these loci in two distant populations of C. crambe are presented to assess their potential utility as high‐resolution genetic markers for this species. The number of alleles per locus ranged between three and 16 and the distributions of allele frequencies differed considerably between the two populations, indicating a marked genetic differentiation between them. These are the first microsatellite loci reported from any species in the phylum.  相似文献   

6.
Genetic variation for six loci in 37 populations of Muscari comosum L. (Liliaeeae) is surveyed. One locus is monomorphic and identical in all the populations. The remaining loci are polymorphic. Although the GOT-1 and GOT-3 loci show a pronounced heterozygote deficit explained by selection acting upon these loci (or on genes linked to them), the remaining loci nearly conform to Hardy-Weinberg proportions. The overall pattern shows a low level of heterozygote deficit (FIS=0.08) explained by the mixed mating system. The organization of genetic variation shows a low level of interpopulation differentiation (FST or GST=0.04). At the same time, autocorrelation analysis shows no pattern of geographical variation. It is concluded that gene flow and selection interact to produce the overall pattern of genetic variation.  相似文献   

7.
This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (GST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is “explained” by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters.  相似文献   

8.
The presence of positive genetic correlations between oviposition or feeding preference for hosts, and performance on those hosts, is of fundamental importance to models of host race formation, sympatric speciation, and the maintenance of genetic variation within phytophagous insect populations. In this paper, I estimate the amount of genetic variation in oviposition preference and larval performance present in two California populations of a cosmopolitan pest of stored legumes, Callosobruchus maculatus (Bruchidae: Coleoptera), and examine whether positive genetic correlations exist between preference and performance. High levels of genetic variation in both preference and performance were detected in one population (Bay Area population, h2 = 0.73 for oviposition preference), but not in another population (Davis population). A second estimate of the amount of genetic variation for oviposition preference in the Bay Area population, after three generations of laboratory rearing, supports the hypothesis that the absence of significantly nonzero heritabilities in the Davis population is probably due to the three generations of laboratory rearing prior to the start of the experiment. No positive genetic correlations were detected between preference and any performance character measured. Data are also presented on the genetic correlations between performance on azuki (Vigna angularis) and cowpea (Vigna unguiculata). Genetic correlations were found to be positive for all characters in both populations of C. maculatus (range 0.132 to 0.542).  相似文献   

9.
We sampled 17 populations of a rare autotetraploid Aster kantoensis (Asteraceae) from three river systems located in central Japan, and studied them for allelic variation at 22 enzyme loci. There was no significant correlation between the actual population size and three genetic diversity parameters, suggesting that the effective population size was very small even for the large populations, i.e., even large populations may still have a high probability of being of recent origin and remain influenced by the founder effect. Compared to other autotetraploid species, the total genetic variation of A. kantoensis is small. The number of alleles and gene diversity of a population were not significantly different among the river systems, although the percentage of polymorphic loci was different. Genetic differentiation among river systems was larger than between populations within the river systems, thereby indicating that gene flow between river systems is small, especially between the Kinu River system and Tama or Sagami River systems.  相似文献   

10.
Aim To examine the distribution and structure of genetic variation among native Spartina alterniflora and to characterize the evolutionary mechanisms underlying the success of non‐native S. alterniflora. Location Intertidal marshes along the Atlantic, Gulf and Pacific coasts of North America. Methods amova , parsimony analysis, haplotype networks of chloroplast DNA (cpDNA) sequences, neighbour‐joining analysis, Bayesian analysis of population structure, and individual assignment testing were used. Results Low levels of gene flow and geographic patterns of genetic variation were found among native S. alterniflora from the Atlantic and Gulf coasts of North America. The distribution of cpDNA haplotypes indicates that Atlantic coast S. alterniflora are subdivided into ‘northern’ and ‘southern’ groups. Variation observed at microsatellite loci further suggests that mid‐Atlantic S. alterniflora are differentiated from S. alterniflora found in southern Atlantic and New England coastal marshes. Comparisons between native populations on the Atlantic and Gulf coasts and non‐native Pacific coast populations substantiate prior studies demonstrating reciprocal interspecific hybridization in San Francisco Bay. Our results corroborate historical evidence that S. alterniflora was introduced into Willapa Bay from multiple source populations. However, we found that some Willapa Bay S. alterniflora are genetically divergent from putative sources, probably as a result of admixture following secondary contact among previously allopatric native populations. We further recovered evidence in support of models suggesting that S. alterniflora has secondarily spread within Washington State, from Willapa Bay to Grays Harbor. Main conclusions Underlying genetic structure has often been cited as a factor contributing to ecological variation of native S. alterniflora. Patterns of genetic structure within native S. alterniflora may be the result of environmental differences among biogeographical provinces, of migration barriers, or of responses to historical conditions. Interactions among these factors, rather than one single factor, may best explain the distribution of genetic variation among native S. alterniflora. Comprehensive genetic comparisons of native and introduced populations can illustrate how biological invasions may result from dramatically different underlying factors – some of which might otherwise go unrecognized. Demonstrating that invasions can result from several independent or interacting mechanisms is important for improving risk assessment and future forecasting. Further research on S. alterniflora not only may clarify what forces structure native populations, but also may improve the management of non‐native populations by enabling post‐introduction genetic changes and the rapid evolution of life‐history traits to be more successfully exploited.  相似文献   

11.
Genetic variability within and among Bulinus truncatus of the Albertine Rift freshwater bodies were assessed to investigate the degree of inbreeding and gene flow in the snail populations. The effect of ploidy on the genetic structuring of B. truncatus is also described. We characterized the genetic structure of seven B. truncatus populations from Lake Albert, Lake Kivu, and Katosho swamp in Tanzania using five polymorphic microsatellite loci. Genetic differentiation was quantified using pairwise FST values and Nei’s standard genetic distances. Different alleles were observed across all loci and genetic diversity was low although it varied greatly across populations; observed heterozygosity was, however, higher than the expected heterozygosity in three of the populations studied. Significant heterozygote deficiencies were observed coupled with significant linkage disequilibria in five populations for all the five loci examined in this study. We found significant genetic differentiation among the seven freshwater bodies; private alleles were observed across all loci indicating restricted or absence of gene flow between populations. Limited snail dispersal and the reproductive biology of B. truncatus are the major forces shaping the genetic variation observed. Low genetic variation within B. truncatus populations exposes them to a high parasite infection risk as predicted in the Red Queen hypothesis.  相似文献   

12.
The reproductive composition and genetic diversity of populations of the red seaweed Lithothrix aspergillum Gray (O. Corallinales) were studied at three southern California sites (Shaw's Cove and Treasure Island, Laguna Beach; Indian Rock, Santa Catalina Island) and at a fourth site (Bodega Bay) located in northern California. Sexually reproducing populations were confined to southern California. Diploid individuals were numerically dominant over haploid (gametophytic) individuals at all sites. Intertidal and subtidal subpopulations from Shaw's Cove differed in their reproductive profiles. Most intertidal specimens found on emersed surfaces were densely branched, turf-forming, and bore tetrasporangial (68.6%), carposporangial (11.4%), or spermatangial (5.7%) conceptacles, reflecting a sexual life history; none produced asexual bispores. In contrast, 74.3% of the larger, loosely branched subtidal specimens bore bisporangial conceptacles indicative of asexual reproduction. Nearly 70% of the Indian Rock thalli showed no evidence of conceptacle formation. Only asexual, diploid bispore-producing thalli were obtained from the Bodega Bay site. Genetic diversity (mean number of alleles per locus, percent of polymorphic loci, and average expected heterozygosity) of diploid L. aspergillum populations varied with life-history characteristics and geographic location. A total of 30 alleles was inferred from zymograms of 16 loci examined by starch-gel electrophoresis; of these loci, 11 were polymorphic. The genetic diversity of sexual, diploid populations of L. aspergillum (alleles per locus [A/L] = 1.4-1.5; percent polymorphic loci [%P] = 37.5-50.0) was relatively high compared with other red seaweeds. Lowest diversity (A/L = 1.0; %P = 0.0) occurred in the exclusively asexual Bodega Bay population which consisted of genetic clones. All sexual L. aspergillum populations deviated significantly from Hardy-Wein-berg expectations due to lower than expected heterozygosity. Genetic differentiation (Wright's Fstatistic [FST]; Nei's Genetic Distance [D]) among sexually reproducing southern California populations was low (FST= 0.030) on a local scale (ca. 5 km), suggesting high levels of gene flow, but high genetic differention (FST= 0.390 and 0.406) occurred among southern California populations separated by ca. 70 km. Very high genetic differentiation (FST= 0.583–0.683) was obtained between northern and southern California populations separated by 700–760 km. Our genetic and reproductive data suggest that the L. aspergillum population from Bodega Bay is sustained by perennation, vegetative propagation, or asexual reproduction by bispores and may represent an isolated remnant or a population established by a founder event.  相似文献   

13.
ABSTRACT

Powelliphanta is a genus of large carnivorous land snails endemic to New Zealand which display phenotypic variation within comparatively small geographic distances. The diversity within these snails has become a matter of high interest to conservation, as many lineages occupy small (or highly fragmented) ranges that render them vulnerable to ongoing habitat loss and predation by exotic pests. Combining Powelliphanta mitochondrial sequence data and genotypes of microsatellite loci we document the genetic structure within a species complex dubbed ‘Kawatiri’. All populations (with one exception) within the Kawatiri lineage are restricted to subalpine habitat (at elevations over 600?m above sea level). The ranges of some Kawatiri complex populations are adjacent to the congeneric lowland species Powelliphanta lignaria. Improved understanding of the distribution of this complex and the level and structure of genetic diversity provided a picture of a naturally fragmented lineage, restricted to a particular ecological zone. We identified six genetic clusters associated with population connectivity orientated north–south along mountain ranges, with east–west divisions between ranges. Future management should aim to retain the evolutionary potential within this young radiation by actively conserving the variation encompassed by each of the six clusters identified here.  相似文献   

14.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

15.
At least five of the biotypes described in the Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) complex are known to be present in the Mediterranean Basin area. Only two of them, however, are economically relevant, that is, biotypes B and Q. Biological and genetic differences between the two biotypes have been well studied, but less is known about their patterns of genetic variation and population structure. To address these issues, a study was undertaken based on variation at six microsatellite loci among a subset of nine B. tabaci populations (five belonging to the Q and four to the B biotype). The data obtained show that (i) these loci showed considerable polymorphism in the Q and B biotypes populations although the presence of null alleles can obscure the picture; (ii) the Iberian‐Q, Canarian‐Q, and Egyptian‐B populations exhibit heterozygosity excess as a result of bottleneck events; (iii) the low genetic differentiation between the Israeli, Iberian Peninsula, and Italian populations suggest that these populations share a common gene pool; (iv) the genetic distances between the Canarian‐Q population and the geographically close population from Morocco indicates spatial isolation and a limited gene flow; and finally (v) the microsatellite data for the B populations indicate that the whiteflies from Egypt and Israel have a close phylogenetic relationship, but the source of these biotype B invasions into the Mediterranean area remains unknown.  相似文献   

16.
Eleven populations of ponderosa pine (Pinus ponderosa) located on an east-west transect of the Palmer Divide of Central Colorado were studied. Within each population transects of approximately 20 × 250 m were established. In seven populations the transects represented contrasting ecological conditions such as north and south facing slopes. Within each transect 200–250 trees greater than 10 cm in height were tagged, their locations mapped, their ages determined and their diameters and heights measured. Electrophoretic analyses of mature needle tissue indicated that while most of the allozyme variation resided within transects, significant genetic heterogeneity could be found between populations and transects. Among populations consistent patterns of genetic variation were observed at only two loci. Five of the 13 loci had consistent but very small differences between transects within populations. Considerable genetic heterogeneity occurred among 20 m sections of the transects and among age classes within transects. The genetic structure of these populations can be explained by mosaic patterns of seedling recruitment characteristic of these ponderosa pine stands. Only a few maternal trees contribute to each patch of seedlings, and this localized founder effect produces the genetic structure observed in these populations.  相似文献   

17.
Genetic variation is described at 15 loci in 2 neotenic and 12 nonneotenic populations of red-spotted newts. Though high levels of genetic similarity (I=0.990) were found among all populations, allele frequencies at six of the eight most polymorphic loci show significant heterogeneity across populations. Change in allele frequencies at two of these loci (Pep-2 and Ldh-1) is significantly correlated with latitude. Interspecific homologies are established for newt peptidases based on substrate specificities and lactate dehydrogenases based on tissue distribution, thermal stability, and kinetic properties. Nonneotenic populations are highly variable (H=0.157) and neotenic populations are only slightly, but significantly, less variable (H=0.120). The high levels of heterozygosity detected in nonneotenic populations may result from large effective population size and/or environmental heterogeneity. The unexpectedly high heterozygosity values obtained for the neotenic populations may indicate adult dispersal or the presence of some previously undetected red efts at these localities. In any case, a major change in life history has apparently had little effect on the genetic structure of these populations.This research was supported by grants from the Blakeslee Fund of Smith College.  相似文献   

18.
Geographic patterns of genie differentiation were compared with differentiation between karyotypes in the intertidal snail Nucella lapillus. Samples from 24 sites covering the species range in Europe and North America were analysed for allozyme variation at 16 soluble enzyme loci. Two homokaryotypes have been identified with diploid numbers 2n = 26 and 2n= 36 (variation is Robertsonian and hybrids have intermediate chromosome numbers) and samples were classified (on the basis of published data) according to karyotype. Group 1 consisted of samples from three English Channel populations of higher chromosome number (on average 2n > 32) and Group 2 consisted of the remaining 21 samples (presumed to be 2n= 26). Karyotype variation accounts for roughly the same amount of the absolute allozyme variance as geographic variation (46.3 °, and 53.7°, respectively). Yet the patterns of differentiation seen between karyotypes and with geographic separation are very different. In samples classified as 2n= 26 (Group 2), while there is a significant amount of heterogeneity (FST per locus averaged 0.128 for 10 polymorphic loci), allozyme variation occurs independently at different loci so mean genetic identity (Nei) is high: 0.972. There is only a slight decline in genetic identity with distance (genetic identity averaged 0.965 for amphi-atlantic comparisons) indicating that passive transport of juveniles or adults may contribute significantly to gene flow. Conversely, allozyme variation between karyotypes was concordant. High chromosome number populations possessed a suite of alleles at four allozyme loci (Esl-3, Lap-2, Mdh-1 and Pep-2) which were absent or rare in Group 2 samples resulting in high FST values for these loci (from 0.294 to 0.472) when karyotypic classes were combined. Consequently the mean genetic identity between these Robertsonian races is low, 0.856, and falls within the range more usually associated with congeneric comparisons than with con-specific comparisons. The mechanisms maintaining this genie difference are unclear. However the distribution of the karyotypes and physiological and morphological differences (in shell shape) between them strongly suggest that karyotypic variation in Nucella is adaptive.  相似文献   

19.
During a two year period 457 clones of the diatom Skeletonema costatum were isolated prior to and during the summer-fall and winter-spring blooms of this species in Narragansett Bay, R.I. Their allozyme banding patterns were examined for 5 enzyme loci. Genotypic frequencies indicated that the winter bloom populations were genetically different from the prevalent summer bloom populations of the same species. Genetic differences between seasonal blooms are as great as those found between species of terrestrial organisms, but are not accompanied by morphological variation. Although blooms have distinct prevalent forms, they are not genetically homogeneous. No single clone is ever representative of all populations of S. costatum. The dynamics of these allochronic populations appear to be governed by a form of cyclic natural selection, and are probably a regular feature of the cycles of abundance of this species in this area. These results cast doubt on some of the assumptions often made in the “autecological approach” to phytoplankton ecology. This study comprises the first quantitative examination of the population genetics of a microalga.  相似文献   

20.
Intron sequences from the elongation factor-1α (EF1α) gene from the marine shrimp Penaeus vannamei reveal extensive variation even among inbred populations of hatchery-raised shrimp. Among 44 individuals analyzed, we found 13 alleles varying by up to 7.5% sequence differences, and including several allele-diagnostic insertions and deletions. High heterozygosity contrasts with low genetic variation at allozyme loci, but we observed up to four alleles per individual, suggesting that we have identified two separate, polymorphic loci. We partitioned the observed alleles into two groups representing hypothetical duplicated loci. However, the alleles are so similar to one another that a phylogenetic analysis does not cluster them into monophyletic groupings. A possible explanation is that concerted evolution is acting to homogenize genetic variation among these two putative loci. Received July 17, 1998; accepted November 23, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号