首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The oxidation of 1-14C palmitate, 2-14C glucose, 1-14C lactate, 1-14C alanine, 1-14C leucine and 1-14C glutamate, injected via a cannula into the dorsal aorta, was determined in trout, either at rest, or during swimming at 80% of the maximum sustained speed. The oxygen consumption and the excretion rates of14CO2 as well as CO2 were measured.While the oxygen consumption of swimming trout was about twice as high as of resting trout, the oxidation rates of the injected tracers increased by up to 9 time. Despite the increased importance of blood borne substrates, the estimated contribution to total CO2 production is about 6% for the resting and 17% for the active trout. The majority of the oxidisable substrates must therefore be endogenous.The mobilization and oxidation rates of lactate, palmitate and leucine were particularly increased during swimming. During rest, palmitate and leucine oxidation rates are low. While oxidation rates of alanine and glutamate are intermediate, those of glucose were found to be extremely low, both at rest and during swimming. The measured RQ values for resting and swimming trout were 0.91 and 0.96 respectively, indicating that protein is the major fuel, since glucose oxidation seems of minor importance.Abbreviations and symbols SA specific activity - tt transit time - decay (time) constant - flux (in % of injected dose per hour) - Ucrit critical velocity of sustained swimming - TCO2 total CO2  相似文献   

2.
1. Rats were starved for 48hr. or fed for 1 week on a high-fat or a high-carbohydrate diet. The effects of these dietary alterations on the rate of production of 14CO2 from trace amounts of [U-14C]glucose, [1-14C]palmitate or [1-14C]acetate administered intravenously were studied. 2. The oxidation of [14C]glucose was most rapid in the carbohydrate-fed condition and was decreased significantly and to the same extent after starvation and after feeding with fat. 3. Under all dietary regimes studied the maximum rate of elimination of 14CO2 from [14C]palmitate occurred within a few minutes after injection, but considerably more was oxidized after starvation and feeding with fat than after feeding with carbohydrate. 4. Alterations in diet had no effect on the oxidation and high recovery of administered [14C]acetate as 14CO2. 5. Graphical analysis showed the presence of several exponential components in the 14CO2-elimination curves. 6. In all studies a marked similarity in oxidative pattern was noted between the starved and the fat-fed rat.  相似文献   

3.
Chick embryo heart cells in tissue culture actively oxidize [1-14C]palmitate to 14CO2. Fatty acid oxidation by cell monolayers was linear with time and increasing protein concentration. The addition of carnitine to the assay medium resulted in a 30–70% increase in the rate of fatty acid oxidation. The specific activity of palmitic acid oxidation did not change significantly with time in culture and was also the same in rapidly proliferating and density-inhibited cell cultures. Addition of unlabeled glucose to the assay medium resulted in a 50% decrease in 14CO2 production from [1-14C]palmitate. Conversely, palmitate had a similar sparing effect on [14C]glucose oxidation to 14CO2. Lactate production accounted for most of the glucose depleted from the medium and was not inhibited by the presence of palmitate in the assay. Thus, the sparing action of the fatty acids on glucose oxidation appears to be at the mitochondrial level. The results indicate that although chick heart cells in culture are primarily anaerobic, they can oxidize fatty acid actively.  相似文献   

4.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

5.
The time course of glucagon action on the utilization of [U-14C]palmitate by isolated hepatocytes was studied. Ten minutes incubation of the cells after hormone addition was required in order to observe increased oxidation and decreased esterification of the labeled palmitate. The acid-soluble, labeled oxidation products could be separated into two main fractions, glucose and ketone bodies. Initially, glucagon directed the flux of radioactivity toward glucose and CO2. After prolonged incubation in the presence of glucagon, labeled ketone bodies, as well as labeled glucose and 14CO2, were increased. This effect was most marked as regards glucose. The results indicate that glucagon induces a rapidly onset stimulation of the rates of Krebs cycle and gluconeogenesis, while increased oxidation and decreased esterification of palmitate are time-delayed corresponding to the establishment of a lower level of glycerophosphate. About 10% of the glucose carbon formed by gluconeogenesis originated from the fatty acid when cells from fasted rats were incubated in the presence of alanine and [U-14C]palmitate.  相似文献   

6.
Oxidation of palmitate by rat skeletal muscle mitochondria was determined polarographically and radiochemically under state 3 conditions. Maximal oxidation rate is reached at 4 μm palmitate, palmitoyl-CoA, or palmitoyl-l-carnitine. At palmitoyl-CoA concentrations higher than 30 μm oxidation is inhibited. At limiting substrate concentrations as used in polarographic experiments palmitate is totally degraded to CO2. At higher concentrations the palmitate molecule is only partially degraded, due to the accumulation of intermediates. Citric acid cycle intermediates, especially 2-oxoglutarate, accumulate during oxidation of palmitate in the presence of malate. It is suggested that this accumulation is stimulated by dicarboxylate exchange. The rate of formation of 14CO2 and 14C-labeled perchloric acid-soluble products is higher from [1-14C]palmitate than that from [U-14C]palmitate. This difference, which is enhanced by higher carnitine concentrations indicates incomplete oxidation during the β-oxidation in state 3. The simultaneous determination of 14CO2 production and 14C-labeled perchloric acid-soluble products appears to be a more accurate and sensitive method for measuring 14C-fatty acid oxidation than that of 14CO2 production alone.  相似文献   

7.
Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incoiporation of l-leucine-1–14C into protein fraction of skeletal muscle and reduced its oxidation to 14CO2.

These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid.  相似文献   

8.
Rat liver cells isolated by the collagenase-hyaluronidase perfusion method were treated with membrane-impermeable protein reagents (7-diazonium, 1–3-naphthalene disulfonate, diazotized sulfanilic acid, 8-anilino-naphthalene disulfonate), trypsin, phospholipase A, phospholipase C, and phospholipase D. The treated cells were incubated with [1-14C]palmitate and the 14CO2 produced was taken as a measure of fatty acid uptake by the cells. 14CO2 production by the cells was not inhibited after treatments with the membrane-impermeable protein reagents or phospholipase D. Treatments with small amounts of trypsin or phospholipases A or C caused inhibition of CO2 production from tracer amounts of palmitate. The inhibition by trypsin was partially, and that by phospholipase A was fully, reversed by increasing the amount of palmitic acid in the incubation medium. The oxidation of shorter-chain fatty acids such as octanoic acid was not decreased but increased after treating the cells with trypsin or phospholipase A. The membrane-impermeable reagents inhibited the oxidation of palmitate to CO2 by liver cells isolated by mechanical dispersion. These reagents also inhibited the long-chain acyl CoA ligase activity of liver microsomes. From these results it is suggested that the inhibition of CO2 production by intact liver cells from palmitate after enzyme treatments, is due to partial removal or modification of a normal transport component for long-chain fatty acids on the plasma membrane. The possibility of proteins (or lipoproteins) buried below the surface layer of plasma membrane in fatty acid uptake by liver cells is indicated.  相似文献   

9.
Respiratory metabolism in buckwheat seedlings   总被引:12,自引:8,他引:4       下载免费PDF全文
Effer WR  Ranson SL 《Plant physiology》1967,42(8):1042-1052
Young seedlings of buckwheat (Fagopyrum esculentum) respire in air with an RQ of unity. Analysis of respiratory substrates coupled with a study of the utilization of acetate-14C and glucose-14C suggest that both the Embden-Meyerhof-Parnas, tricarboxylic acid and pentose phosphate sequences participate in the total respiratory catabolism.

In anoxia CO2 dropped to one third of the aerobic rate and ethanol accumulated to only about one half the rate of CO2 output on a molar basis. Smaller amounts of lactate, succinate and free amino acids (particularly alanine and γ-aminobutyric acid) accumulated, carboxylic acids decreased and there were initial increased in pyruvate and α-ketoglutarate. The observed changes are consistent with residual tricarboxylic acid and pentose phosphate cycle activity in anoxia and may account for the excess CO2 production over ethanol accumulation. CO2, ethanol and lactate production did not account for all of the carbohydrate consumed in anoxia.

Relative rates of carbon loss were measured in air and in atmospheres containing 3.5%, 2.1%, 1.3% and 0.6% oxygen. The extinction point of anaerobic metabolism was 1.5%.

On return to air from anoxia the CO2 output increased and the RQ rose from 0.8 to 1.0 over the first 2-hour period. Ethanol, lactate and succinate were consumed and other constituents returned to their previous aerobic level. Some of these changes suggest a rather slow resumption of tricarboxylic acid cycle activity on return to air.

Carbon loss as CO2 in air was greater than the carbon loss as CO2 at the extinction point. Carbon loss in anoxia as CO2, ethanol and lactate was similar to carbon loss at the extinction point. Assessed in this orthodox manner buckwheat seedlings show no Pasteur effect but the complex nature of the changes in levels of metabolic substrates and intermediates do not allow firm conclusions to be drawn on the effects of oxygen on the rates of glycolysis and other respiratory processes.

  相似文献   

10.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

11.
In order to clarify the nutritional significance of metabolism of the carbon skeleton of individual amino acids, the metabolic fates of l-leucine-U-14C and l-alanine-U-14C were investigated in growing rats fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy.

The incorporation of 14C into body protein in 12 hr after the injection of leucine-14C was about 73% of the dose in the 0 and 5 PC% groups, though it decreased with increasing the levels of dietary protein from 10 to 30 PC%. The value of 14C recovery in body protein almost agreed with the net protein utilization (NPU) determined for the whole egg protein in a similar experimental condition. The 14C recovery in expired CO2 and body lipid suggested that the carbon skeleton of leucine is well utilized as an energy source when the dietary carbohydrate is extensively replaced by protein.

While, the incorporation of 14C into body protein from alanine-14C was less than about 11% of the dose in all the dietary groups, and the majority of 14C was recovered in expired CO2 and body lipid in a remarked contrast to leucine.

A similar pattern in urinary excretion of 14C was obtained for these amino acids, and the refracted rise of 14C from 10 PC% may give an indication for minimum protein requirements.  相似文献   

12.
Marine benthic diatoms excrete large quantities of extracellular polymeric substances (EPS), both as a function of their motility system and as a response to environmental conditions. Diatom EPS consists predominantly of carbohydrate‐rich polymers and is important in the ecology of cells living on marine sediments. Production rates, production pathways, and monosaccharide composition of water‐soluble (colloidal) carbohydrates, EPS, and intracellular storage carbohydrate (glucans) were investigated in the epipelic (mud‐inhabiting) diatoms Cylindrotheca closterium (Ehrenburg), Navicula perminta (Grün.) in Van Heurck, and Amphora exigua Greg. under a range of experimental conditions simulating aspects of the natural environment. Cellular rates of colloidal carbohydrate, EPS, and glucan production were significantly higher during nutrient‐replete compared with nutrient‐limited growth for all three species. The proportion of EPS in the extracellular carbohydrate pool increased significantly (to 44%–69%) as cells became nutrient limited. Cylindrotheca closterium produced two types of EPS differing in sugar composition and production patterns. Nutrient‐replete cells produced a complex EPS containing rhamnose, fucose, xylose, mannose, galactose, glucose, and uronic acids. Nutrient‐limited cells produced an additional EPS containing mannose, galactose, glucose, and uronic acids. Both EPS types were produced under illuminated and darkened conditions. 14C‐labeling revealed immediate production of 14C‐glucan and significant increases in 14C‐EPS between 3 and 4 h after addition of label. The glucan synthesis inhibitor 2,6‐dichlorobenzonitrile significantly reduced 14C‐colloidal carbohydrate and 14C‐EPS. The glucanase inhibitor P‐nitrophenyl β‐d ‐glucopyranoside resulted in accumulation of glucan within cells and lowered rates of 14C‐colloidal and 14C‐EPS production. Cycloheximide prevented glucan catabolism, but glucan production and EPS synthesis were unaffected.  相似文献   

13.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

14.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

15.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   

16.

Microbially influenced corrosion (MIC) is being increasingly recognised as a serious problem. To investigate the role of MIC, radiotracer activity and lipid biomass measurements were performed on samples from offshore and on‐shore natural gas transmission systems. These measurements evaluated the biomass and metabolism of microbial communities residing inside transmission pipelines. Aqueous and nonaqueous hydrocarbon samples from liquid separators, sludge catchers and nodules attached to pipe walls were aseptically recovered and inoculated into anaerobic tubes for radiotracer time course experiments or preserved with chloroform‐methanol for total lipid analyses. MPN enrichments and phospholipid biomass determinations estimated microbial populations of 104—107 cells per gram in several samples. General microbial metabolism was demonstrated by [l‐14C]acetate incorporation into lipids and by [14C]CO2 production from [U‐14C]glucose. [14C]Acetate was slowly mineralised to 14CO2 without significant methane production. [14C]Acetate was produced by fermentation of [14C]glucose, [14C]palmitate and by hydrogen mediated acetogenesis in the presence of [I4C]CO2. In one location acetogenesis from hydrogen and carbon dioxide accounted for 0–7 mmol.l‐1 of acetate production per week. These results demonstrated that microorganisms could utilise natural gas impurities to produce organic acids. This activity could adversely affect the structural integrity (MIC) of high pressure natural gas pipelines.  相似文献   

17.
Pharmacologic (millimolar) levels of carnitine have been reported to increase myocardial glucose oxidation, but whether physiologically relevant concentrations of carnitine affect cardiac metabolism is not known. We employed the isolated, perfused rat heart to compare the effects of physiologic levels of carnitine (50 M) and insulin (75 mU/l [0.5 nM]) on the following metabolic processes: (1) glycolysis (release of 3H2O from 5-3H-glucose); (2) oxidation of glucose and pyruvate (production of 14CO2 from U-14C-glucose, 1-14C-glucose, 3,4-14C-glucose, 1-14C-pyruvate, and 2-14C-pyruvate); and (3) oxidation of palmitate (release of 3H2O from 9,10-3H-palmitate). We found that addition of carnitine (50 M) to a perfusate containing both glucose (10 mM) and palmitate (0.5 mM) stimulated glycolytic flux by 20%, nearly doubled the rate of glucose oxidation, and inhibited palmitate oxidation by 20%. These actions of carnitine were uniformly similar to those of insulin. When carnitine and insulin were administered together, their effects on the oxidation of glucose and palmitate, but not on glycolysis, were additive. When pyruvate (1 mM) was substituted for glucose, neither carnitine nor insulin influenced the rate of oxidation of pyruvate or palmitate. In combination, however, carnitine and insulin sharply suppressed pyruvate oxidation (75%) and doubled the rate of palmitate oxidation. None of the responses to carnitine or insulin was affected by varying the isotopic labeling of glucose or pyruvate. The results show that carnitine, at normal blood levels, exerts insulin-like effects on myocardial fuel utilization. They also suggest that plasma carnitine in vivo may interact with insulin both additively and permissively on the metabolism of carbohydrates and fatty acids  相似文献   

18.
The effects of dietary protein contents and regular exercise on the oxidation of supplemented leucine were examined. In the short-term study, male BALB/cCrSlc mice were fed diets containing 0, 10, 20, 35, and 60% protein: energy ratios for 1 week. In the long-term study, exercised and sedentary mice were fed diets containing 20, 35, and 60% protein ratios for 9 weeks. After the feeding periods, the mice were a bolus administered oral supplements of l-[1-13C] leucine. Expired gas was analyzed, and oxidized leucine was expressed as a relative 13CO2/12CO2 ratio. In the short-term study, the peak 13CO2/12CO2 ratio significantly increased with diet protein concentrations. Moreover, the long-term study also showed that the peak 13CO2/12CO2 ratio was significantly increased by high protein diets in both exercised and sedentary mice. Our results indicate that supplemental leucine oxidation is associated with consumption of a high-protein diet, irrespective of exercise status.

Abbreviations: AUC: area under the curve; EX: exercise; RQ: respiratory quotient; SED: sedentary; VO2/W: oxygen uptake per body weight  相似文献   


19.
Gluconeogenesis in Citrullus lanatus seeds is a post germinative event. Increases in isocitrate lyase activity and incorporation of radioactivity from [2-14C]acetate into sugars occur only after radicle emergence. During germination, the seeds appear to rely on carbohydrate as the respiratory substrate. At this time, glycolysis, the pentose phosphate pathway, and the tricarbocyclic acid cycle seem to be functional. Utilization of raffinose during germination appears to be important.

Water stress, which completely inhibits germination, has a marked effect on carbohydrate metabolism. The rate of 14CO2 release from [2-14C]acetate, [1-14C]glucose, and [6-14C]glucose is lower in the stressed seeds than the control seeds during the respiratory lag phase. However, in the stressed seeds neither glycolysis, the pentose phosphate pathway, nor the tricarboxylic acid cycle is completely inhibited. In contrast to the control seeds in which raffinose content sharply declines after 12 h of incubation, raffinose content in the stressed seeds remains fairly constant.

The respiratory lag phase of the control seeds coincides with a lower reducing substance content, glucose content, and fructose content than in the stressed seeds during the corresponding incubation period.

  相似文献   

20.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号