首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A maltose phosphorylase (EC 2.4.1.8; MPase) showed novel acceptor specificity and transferred the glucosyl moiety of maltose not only to sugars but also to various acceptors having alcoholic OH groups. Salicyl alcohol acted as acceptor for MPase from Enterococcus hirae, and the product, salicyl-O-α-D-glucopyranoside (α-SalGlc) was identified. The yield based on supplied salicyl alcohol was 86% (mol/mol).  相似文献   

2.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans β-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo β-D-galactopyranoside (S6Galβ-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Galβ1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal β1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Galβ1-2Glc was mainly produced along with β-(1-1)α,β-(1-3),β-(1-6) isomers in 74% total yield. When methyl α-D-glucopyranoside (Glcα-OMe) was an acceptor, the enzyme also formed mainly S6Galβ1-2Glcα-OMe with its β-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of β-(1-2)-linked disaccharides. In contrast, with the corresponding methyl β-D-glucopyranoside (Glcβ-OMe) acceptor, S6Galβ1-3Glcβ-OMe and S6Galβ1-6Glcβ-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the β-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

3.
Summary The disaccharides formed by enzymatic transfer of the -D-galactopyranosyl residue fromo-nitrophenyl -d-galactopyranoside to -d-xylopyranosides have been identified. The influence of different factors on the yields of the disaccharides obtained was evaluated. Significant changes in selectivity were observed when -galactosidase fromE. coli was used instead of -galactosidase fromA. oryzae.  相似文献   

4.
-Glucosidase from Thai Rosewood (Dalbergia cochinchinensis Pierre) catalyzes the synthesis disaccharides and trisaccharides at 40–70% (w/w) glucose. Gentiobiose (1–6-diglucose) was the major disaccharide. The reaction was optimal at pH 5.0 and 60–65°C. When the reaction was performed in mixtures of glucose and fucose, a novel product was found, which was purified and characterized by NMR spectroscopy to be d-fucosyl (1–6)-d-glucose.  相似文献   

5.
Applied Microbiology and Biotechnology - β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce...  相似文献   

6.
An extracellular -glucosidase II of Aspergillus niger catalyzed the synthesis of methyl -glucoside and ethyl -glucoside with 5.0% (v/v) cellobiose as glucosyl donor in a biphasic media containing 20% (v/v) methanol and 30% (v/v) ethanol, respectively. The maximum yield of methyl -glucoside and ethyl -glucoside was 83% (mol/mol; 12 mg/ ml) and 53% (mol/mol; 5.5 mg/ml), based on cellobiose consumed. © Rapid Science Ltd. 1998  相似文献   

7.
Optimization of hexyl-&#103-glycoside synthesis from lactose in hexanol at low water activity and high temperature was investigated using &#103-glycosidases from hyperthermophilic organisms: Sulfolobus solfataricus (LacS) and Pyrococcus furiosus (CelB). The method for water activity adjustment by equilibration with saturated salt solutions was adapted for use at high temperature. The influence of enzyme immobilization (on XAD-4, XAD-16, or Celite), addition of surfactants (AOT or SDS), substrate concentration, water activity, and temperature (60-90°C) on enzymatic activity and hexyl-&#103-glycoside yield were examined. Compared to other &#103-glycosidases in lactose conversion into alkyl glycoside, these enzymes showed high activity in a hexanol one-phase system and synthesized high yields of both hexyl-&#103-galactoside and hexyl-&#103-glucoside. Using 32 &#117 g/l lactose (93 &#117 mM), LacS synthesized yields of 41% galactoside (38.1 &#117 mM) and 29% glucoside (27.0 &#117 mM), and CelB synthesized yields of 63% galactoside (58.6 &#117 mM) and 28% glucoside (26.1 &#117 mM). With the addition of SDS to the reaction it was possible to increase the initial reaction rate of LacS and hexyl-&#103-galactoside yield (from 41 to 51%). The activity of the lyophilized enzyme was more influenced by the water content in the reaction than the enzyme on solid support. In addition, it was concluded that for the lyophilized enzyme preparation the enzymatic activity was much more influenced by the temperature when the water activity was increased. A variety of different glycosides were prepared using different alcohols as acceptors.  相似文献   

8.
The synthesis of 2-deoxyglycosides and, for the first time, of 2-deoxygalactosides is reported using a thermophilic and thermostable β-glycosyl hydrolase from the archeon Sulfolobus solfataricus and glucal or galactal as donors. The yields observed with alkyl acceptors confirmed that the robustness of the biocatalyst is of great help in designing practical syntheses of pure β-anomers of 2-deoxy derivatives of 4-penten-1-ol (obtained in 80% yield at 20 fold molar excess) and 3,4-dimethoxybenzyl alcohol (obtained in 19% yield at 3.3 fold molar excess). The attachment of 2-deoxyglyco units was performed on various pyranosidic acceptors (p-nitrophenyl α-d-glucopyranoside, o-nitrophenyl 2-deoxy-N-acetyl-α-d-glucosamine and p-nitrophenyl 2-deoxy-N-acetyl-β-d-glucosamine). At low molecular excesses of the acceptors, satisfactory yields (20-40%) of chromophoric 2-deoxy di- and trisaccharides were obtained. The different regioselectivity of our enzyme with respect to mesophilic counterparts reflects the importance of biodiversity in this field for the construction of a library of different glycosidases with different specificity.  相似文献   

9.
Summary The enzymatic transformation of desacetyl-lanatoside A (DLA) to its secondary glycoside, digitoxin, in solutions of -and -cyclodextrins is effected using of -glucosidase from barley. Due to the interaction of cyclodextrins (CyDs) with desacetyl-lanatoside A, an increase in solubility of the latter of 24.5 and 230 times was observed for -cyclodextrin and -cyclodextrin, respectively. Kinetic studies of the enzymatic transformation gave for -glucosidase the values KM=3.3×10–4 mol. dm–3 and Vmax=0.557 mol mg–1 min–1 when the substrate was the deacetyl-lanatoside A complex with -cyclodextrin, while in the case of the complex with -cyclodextrin these values were KM=5.45×10–4 mol dm–3 and Vmax=0.896 mol mg–1 min–1.  相似文献   

10.
An extracellular -glucosidase II of Aspergillus niger catalysed the synthesis of cello-oligosaccharides from cellobiose (15%, w/v). The enzyme was stable at and below 4°C for at least 230 days and also stable at 30°C with the presence of 2.0% (w/v) cellobiose. The maximum yield of cello-oligosaccharides was about 30% (mol/mol), based on cellobiose (130 mg/mL) consumed. © Rapid Science Ltd. 1998  相似文献   

11.
Two secondary alcohol glucosides, cyclohexyl-α-d-glucoside and cyclohexyl-β-d-glucoside, were synthesized via the condensation reaction of cyclohexanol with d-glucose in a biphase system catalyzed by α-glucosidase and β-glucosidase, respectively. The effects of pH, water content, glucose concentration and metal ions on the yield of glucosides were studied. The optimum catalytic conditions established for α-glucosidase was 25% (v/v) water content, 2.5 mol/L glucose concentration and pH 2.0, and for β-glucosidase was 30% (v/v) water content, 2.0 mol/L glucose and pH 5.0. The maximum yield of glucoside was 13.3 mg/mL for cyclohexyl-α-d-glucoside and 8.9 mg/mL for cyclohexyl-β-d-glucoside. Synthesis progress was monitored by TLC and quantitatively analyzed by pre-derived capillary gas chromatography (GC). The retention time was 12.34 min for the α isomer and 12.96 min for the β isomer, respectively. With an anomeric purity of more than 99.5%, the two glucosides display excellent site-specific catalysis by α- and β-glucosidase. Herein, we present a general method to produce anomerically pure glucosides via a one-step bio-reaction in a biphase system. This method could potentially be applied in glucosylation of primary and secondary alcohols or other reactions requiring glucosylation.  相似文献   

12.
A transglycosylation reaction with moranoline (1-deoxynojirimycin) was carried out with α-cyclodextrin as the glucose donor and Bacillus macerans amylase as cyclodextrin glycosyltransferase [EC 2.4.1.19]. The resultant transglycosylation products were hydrolyzed by glucoamylase [EC 3.2.1.3] from Rhizopus niveus. The hydrolyzate (the transglycosylation product of the lowest molecular weight) was isolated and the structure was found by physico-chemical methods to be 4-O-α-d-glucopyranosyl-moranoline.  相似文献   

13.
Summary Cladosporium resinae QM 7998 produced high activities of extracellular and constitutive -glucosidase when grown on a variety of sugars or cellulose. Starch and ribose induced enzyme synthesis several fold.Cladosporium resinae could utilize agricultural waste residues for growth and -glucosidase production. The initial pH of the medium had a marked effect on enzyme prowduction and optimum pH was between 4.0 and 5.0 depending on the assay method. Mixed culturing ofC. resinae with yeasts, viz.Saccharomyces cerevisiae andCandida utilis, increased the -glucosidase production while that with other fungi decreased the enzyme yield. The- glucosidase preparation fromC. resinae significantly increased the saccharification of rice and wheat straw (untreated or delignified) withTrichoderma reesei QM 9414 cellulase preparation.
Résumé Cladosporium resinae QM 7998 produit des concentrations élevées de -glucosidase tant extracellulaire que constitutive lorsqu'elle croît sur une variété de sucres ou sur la cellulose. On a trouvé que l'amidon et le ribose augmentent de plusieurs fois la quantité d'enzyme synthétisée.Cladosporium resinae peut utiliser des résidus agricoles pour sa croissance et pour la production de -glucosidase. Le pH initial du milieu exerce un effet marqué sur la production d'enzyme et le pH optimum est compris entre 4.0 et 5.0 selon les conditions de l'essai. La croissance mixte deCladosporium resinae avec diverses levures, notammentSaccharomyces cerevisiae etCandida utilis, augmente la production de -glucosidase tandis que celle avec d'autres moisissures diminue le rendement en enzyme. La -glucosidase deCladosporium resinae augmente de manière significative la saccharification des pailles de riz et de froment (non-traitées ou délignifiées) traités par la cellulase deTrichoderma reesei QM 9414.
  相似文献   

14.
The glucocerebrosidase of human placenta was studied with various potential inhibitors. Several compounds that resemble the lipoidal product of enzyme action, ceramide, proved to be excellent inhibitors, acting by mixed modes (primarily noncompetitively). These were N-decyl-dl-erythro-3-phenyl-2-amino-l, 3-propanediol and several p-substituted derivatives. These compounds were also highly effective in rat spleen toward glucocerebroside and p-nitrophenyl β-glucoside as substrates. The compounds were inactive toward the analogous enzyme, galactocerebrosidase of rat brain, and were slightly stimulatory toward the rat brain enzyme which makes galactocerebroside. Longer and shorter N-alkyl groups proved to be less effective. Decanoic acid amides of phenylaminopropanediol and related compounds proved to be relatively inert, although some were stimulatory. Deoxycorticosterone β-glucoside was a moderately effective noncompetitive inhibitor and is apparently hydrolyzed by a different glucosidase. p-Nitrophenyl β-glucoside was also a moderately effective inhibitor, acting by mixed modes. p-Chloromercuribenzenesulfonate was a good inhibitor, presumably acting on a sensitive cysteine residue. It is concluded that cerebrosidase contains two sensitive sites, one catalytic and the other allosteric, each containing an important anionic group and able to bind glucosides and ceramide-like compounds.  相似文献   

15.
The transglycosylation reaction was done with a β-galactanase from Penicillium citrinum. The regioselectivity in the transglycosylation reaction was studied using soy bean arabinogalactan as a donor and mono- or disaccharide derivatives containing β-galactosyl residue as acceptors. We also synthesized oligosaccharides containing Galβ1→4Gal sequence such as Galβ1→4Galβ1→4Glc, Galβ1→4Galβ1→3GlcNAc, Galβ1→4Galβ1→4GlcNAc, Galβ1→4Galβ1→6GlcNAc, and Galβ1→4Galβ1→3GalNAc for use in the total synthesis of complex sugar chains.  相似文献   

16.
Regioselective synthesis of e.g. 6-O-phenylbutyryl-1-n-butyl--D-glucopyranose was achieved in 21 % yield using almond--glucosidase and Candida antarctica lipase B. The -glucosidase reaction was performed in a biphasic (buffer/n-alcohol) system using free and Eupergit CTM-immobilized glucosidase. Immobilized enzyme allowed product formation even at a water content of 1 %. © Rapid Science Ltd. 1998  相似文献   

17.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

18.
Synthesis of β-tubanol (VIa) was achieved by the bromination of dihydro-β-tubanol acetate (VIIb) followed by dehydrobromination and the subsequent hydrolysis. 2,2-Dimethyl-5-hydroxy-chromanone as well as its derivatives (IV) and the corresponding chromanols (V) and chromans (VII) were also prepared.  相似文献   

19.
The production of -glucosidase by Aspergillus terreus was investigated in liquid shake cultures. Enzyme production was maximum on the 7th day of growth (2.18 U/ml) with the initial pH of the medium in the range of 4.0–5.5. Cellulose (Sigmacell Type 100) at 1.0% (wt/vol) gave maximum -glucosidase activity among the various soluble and insoluble carbon sources tested. Potassium nitrate was a suitable nitrogen source for enzyme production. Triton X-100 at 0.15% (vol/vol) increased the enzyme levels of A. terreus. The test fungal strain showed an ability to ferment glucose to ethanol.  相似文献   

20.
-Glucosidase released by the phytoflagellate Ochromonas danica was the result of secretion; this was adduced from the following: (1) The enzyme was released during growth, including early log phase. (2) The amount released was calculated to be much more than could be attributed to cell lysis. (3) -Glucosidase was released by cells during short term incubation in a dilute salt solution; this release was nearly linear for at least 24 h. (4) Release occurred while cell counts remained nearly constant and cells remained viable. (5) Control experiments excluded cell damage resulting from incubation and cell manipulation as a source of the exoenzyme. (6) No alkaline phosphatase was released and 5 times less phosphoglucose isomerase than glucosidase was released while the cells contained 7 times more phosphoglucose isomerase. (7) The kinetics of release of nonspecific protein and UV absorbing material was markedly different from glucosidase release. (8) Glucosidase release was temperature and energy dependent; anaerobiosis decreased enzyme release. (9) Release was inhibited by cycloheximide. (10) Cells incubated with 3H-leucine synthesized labeled protein which was secreted linearly for at least 24h. Cycloheximide inhibited incorporation of 3H-leucine into protein and the secretion of the labeled protein.Non-Standard Abbreviations CHI cycloheximide - DNP 2,4-dinitrophenol - IAA iodoacetic acid - PGI phosphoglucose isomerase - SIS salt incubation solution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号