首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present EM study, we investigate the retina of Belone belone , a visually-orientated marine predator living close to the water surface. In the duplex retina, four morphologically different cone types are observed: unequal and equal double cones, long single cones and triple cones. In the light-adapted state, five different cone patterns occur: row, twisted row, square, pentagonal and hexagonal patterns. High double cone densities are found ventro-nasally, ventro-temporally and dorso-temporally. Throughout the retina the double cone/single cone ratio is 2 : 1, in the ventral part, however, a 1 : 1 ratio occurs. In the vitreous body we found a curtain-like intraocular septum dividing the retina into two morphologically different regions. In most areas of the dark-adapted retina the cone patterns are absent at the ellipsoid level, with long single cones standing more vitreally in the light path than double cones. The mosaics are retained, however, in the outer nuclear layer. Typical dark adaptation, i.e. the retinomotor movements of the retinal pigment epithelium and photoreceptors in response to the dark adaptation (light change) is not present in the peripheral ventral and parts of the central ventral area. In both regions we found a twisted row pattern of cones having a vitreal position. The findings are discussed with respect to the photic habitat and feeding habits of this species.  相似文献   

2.
半滑舌鳎仔、稚鱼视网膜结构与视觉特性   总被引:3,自引:0,他引:3  
对1-50d半滑舌鳎仔、稚鱼视网膜和全长50mm的半滑舌鳎幼鱼视网膜结构和视觉特性进行了研究。结果表明:(1)3d仔鱼色素层形成,15d仔鱼没有显著的视网膜运动反应,25d时具有正常感受自然光的明视功能,43d半滑舌鳎稚鱼适应自然光的功能丧失;(2)半滑舌鳎仔鱼阶段感受细胞主要为高密度的单锥,视杆细胞和双锥细胞出现的较晚;单锥融合成双锥时,由于半滑舌鳎视锥细胞椭圆体细长,融合程度较差,尽管在视网膜横切面上能够看到双锥,但在切向切面上仍呈现单锥排列方式;随其生长发育,视锥和神经节细胞密度降低,视杆细胞密度增加,31d后视杆细胞数量显著增加;同时,外核层细胞核与神经节细胞的比值增大,网络会聚程度提高;相关数据表明,20-31d是视网膜结构和视觉特性发生明显变化的过渡时期,这是与半滑舌鳎从浮游生活到底栖生活生态环境的变化相适应的;(3)半滑舌鳎内核层结构特殊,50mm时只有1层水平细胞,属感光系统不发达类型,双极细胞和无长突细胞共4-5层,但不可分辨;内核层细胞层数的减少,基本上没有分化的水平细胞、双极细胞和无长突细胞,说明半滑舌鳎视网膜的光敏感性不高;(4)半滑舌鳎仔鱼浮游生活阶段视敏度较高,视觉在捕食行为中具有重要意义;底栖生活后,视敏度和光敏感性都较差,视觉在捕食行为中不可能具有重要作用  相似文献   

3.
目的对比研究兔眼视网膜脱离后选择不同时期手术复位视功能的变化情况,为临床手术时机的选择及预测术后视功能的恢复情况提供理论与实验依据。方法利用家兔制备孔源性视网膜脱离模型,成模后1 d、7 d1、4 d时经手术达解剖复位,采用多焦视网膜电流图检测复位后视网膜的功能,数据处理应用SPSS软件。制备组织病理学切片。结果多焦视网膜电流图显示1 d、7 d、14 d的RRD手术复位后P1波平均象限反应密度(QAP1,nV/deg2),P1波幅值(AP1,μV),N1波幅值(AN1,μV),P1波潜伏期(TP1,ms),N1波潜伏期(TN1,ms)各项数值差异有显著性(P<0.05)。光镜电镜显示视网膜脱离复位后组织病理学改变。结论视网膜脱离手术复位后视网膜细胞功能的恢复与脱离时间有明显的负相关性;多焦视网膜电流图对于局部视网膜功能的评价有重要意义;组织病理学研究提供了解释视功能变化的重要依据。  相似文献   

4.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

5.
All diurnal changes studied - ellipsosome excepted - start at midgestation, following differentiation of photoreceptors and pigment-epithelium cells. These are: (1) shedding of the tips of the light-sensitive photoreceptor outer segments and subsequent phagocytosis by the pigment-epithelium; (2) retinomotor movements of pigment-epithelium processes, rods and cones; (3) changes of cone square-mosaics into row-mosaics at night. Newly-differentiated photoreceptors in the embryo are, therefore, already vulnerable to disruption of cyclical systems. Several inherited human retinal diseases, such as Retinitis pigmentosa, are thought not to affect differentiation of photoreceptors but their cyclical renewal pathways. The retina of the guppy-embryo is, therefore, a valuable model for such studies.  相似文献   

6.
This paper presents the results of an investigation concerned with the effects of long-term hypophysectomy on the retinomotor responses of the euryhaline killifish, Fundulus heteroclitus: 1. The eye of hypophysectomised Fundulus heteroclitus responds to light and dark in the same manner as that of intact controls: the retina is not in a state of permanent light-adaptation as claimed by Vilter (1942) for the hypophysectomised eel. 2. There is no evidence of a persistent circadian rhythm during continous darkness. 3. Unilateral illumination of the eye of intact fish results in dispersion of retinal pigment in both illuminated and unilluminated eyes, as in the goldfish (Ali, 1964), but no such contralateral response was evident after hypophysectomy. The cones are unresponsive.  相似文献   

7.
Topography of photoreceptor cells in young salmon Oncorhynchus masou retina, their properties and morphology of cellular organelles in external and internal segments of photoceptors have been first described. Morphological changes of retina cells were analysed in day and night time, and also in the experiment for indemnification of geomagnetic field (GMF) in the body of the aquarium. A comparison of retina structure in fishes of night and day time controls with that in experimental fishes has shown that the external cone segments in the latter occupy, in relation to the external limiting membrane, an intermediate position, characteristic of retinae exposed to twilight lighting. It is supposed that GMF indemnification was equivalent to weak light pulse, which, however, could considerably change melatonin production by retina photoreceptor cells. Thus, at experimental indemnification of GMF, retina sensitive cells demonstrate typical retinomotor response. Some ultrastructural changes in retina cells were also detected, in particular, size changes in ribbon synapses in rod and cone terminations. In addition, nematosomes appeared in the internal nuclear layer, and in the spinules, i.e. digitiform invaginations of terminal dentrites of horizontal cells into cone nervous terminations, the quantity of an electron dense material was noticeably magnified in comparison with a night control. The noted changes testify, in our opinion, to essential modifications in metabolic processes of retina photoreceptors under effect of GMF variations, in particular, to changes in retinal melatonin synthesis.  相似文献   

8.
A guanine-type retinal tapetum was recorded in the eyes of a carangid fish Kaiwarinus equula (= Carangoides equula), spectrophotometric evidence of such being presented. The total amount of guanine in one eye was about 6.5 mg, the guanine density being ca. 1.3 mg cm(-2) over the retinal surface area. To examine the guanine distribution within the retina, the latter was divided into 21 regions. An area of high guanine density (more than 2.0 mg cm(-2)) was observed in the dorsal fundus of the retina, suggesting that the most sensitive vision was checked downward. Using whole-mount retinal preparations, the distribution of Nissl-stained cells within the retinal ganglion cell layer was examined. The greatest cell density area (area centralis) was observed only in the temporal retina. The visual acuity of the area centralis was 4.3 cycles deg(-1), suggesting that high resolution and binocular vision were directed frontally in this species. The eyes of a related carangid (Pseudocaranx dentex), lacking a tapetum, were also examined for comparison. The possible ecological advantage resulting from the tapetum is discussed in terms of visual threshold.  相似文献   

9.
The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.  相似文献   

10.
The eye of the bigeye tuna (Thunnus obesus) contains a retinal tapetum composed of guanine. The total amount of the guanine in one eye of the fish (SL=120 cm) was about 88.6 mg. The mean guanine content of the tapetum was approximately 1.25 mg/cm2 of the retinal surface. The highest content of guanine (2.15 mg/cm2) was observed only in the ventro-temporal part of the retina. To distinguish this area from the rest of the eye, we suggested the term ‘locus tapetalis’ for it. The visual accommodation system clearly indicated that the visual axis of the fish is upper-forward and the resulting retinal area for acute vision was suggested to be in the ventro-temporal retina. We discussed that the area centralis of the bigeye tuna may have two functions: to guarantee high visual acuity and to allow for high photo-sensitivity in dim light vision.  相似文献   

11.
12.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

13.
The retina of a South American swamp eel, Synbranchus marmoratus (Synbranchidae), was studied by Golgi impregnation, light and electron microscopy. Its principal features include (1) the presence of a dense matrix, possibly a new type of tapetum lucidum, in the pigment epithelium, (2) a well developed photoreceptor layer containing large rods, single, double and triple cones, and (3) well developped inner nuclear and plexiform layers, with the exception of horizontal cells which are few and relatively small. These and other observations are discussed in relation to the photic environment and habits of this fish. The presence of microfilament bundles and two unusual features, microtubuleladen dense bodies and paracrystalline inclusions, in cone myoids are discussed in terms of their possible involvement in retinomotor responses.  相似文献   

14.
Circadian rhythms in the green sunfish retina   总被引:4,自引:0,他引:4       下载免费PDF全文
We investigated the occurrence of circadian rhythms in retinomotor movements and retinal sensitivity in the green sunfish, Lepomis cyanellus. When green sunfish were kept in constant darkness, cone photoreceptors exhibited circadian retinomotor movements; rod photoreceptors and retinal pigment epithelium (RPE) pigment granules did not. Cones elongated during subjective night and contracted during subjective day. These results corroborate those of Burnside and Ackland (1984. Investigative Ophthalmology and Visual Science. 25:539-545). Electroretinograms (ERGs) recorded in constant darkness in response to dim flashes (lambda = 640 nm) exhibited a greater amplitude during subjective night than during subjective day. The nighttime increase in the ERG amplitude corresponded to a 3-10-fold increase in retinal sensitivity. The rhythmic changes in the ERG amplitude continued in constant darkness with a period of approximately 24 h, which indicates that the rhythm is generated by a circadian oscillator. The spectral sensitivity of the ERG recorded in constant darkness suggests that cones contribute to retinal responses during both day and night. Thus, the elongation of cone myoids during the night does not abolish the response of the cones. To examine the role of retinal efferents in generating retinal circadian rhythms, we cut the optic nerve. This procedure did not abolish the rhythms of retinomotor movement or of the ERG amplitude, but it did reduce the magnitude of the nighttime phases of both rhythms. Our results suggest that more than one endogenous oscillator regulates the retinal circadian rhythms in green sunfish. Circadian signals controlling the rhythms may be either generated within the eye or transferred to the eye via a humoral pathway.  相似文献   

15.
Synopsis The cichlid fish, Haplochromis burtoni, is highly dependent on vision for survival in its natural habitat. As is true of most teleost fishes, the eyes continue to grow throughout life without any obvious changes in visual capability. In H. burtoni, for example, retinal area may increase by 27 × in just 6 months. During growth, there is no obvious change in the visual sensitivity, visual acuity or lens quality which must all be appropriate for the enlarging eye. This requires that during growth competing constraints be met. For example, to maintain visual acuity, the number of ganglion cells per visual angle subtended on the retina must remain the same as must the convergence ratio of the cones onto those ganglion cells. In contrast, to maintain visual sensitivity, the number of rod photoreceptors per unit retinal area must remain the same. These requirements are in conflict since a larger eye may preserve acuity with fewer cells per unit area in a larger retina. In addition, the lens properties must remain the same as the animal increases in size so that the image available is of similar quality throughout life. Experiments have been performed to reveal the adaptations during growth which allow the fish to preserve its image of the world throughout life.  相似文献   

16.
ABSTRACT: BACKGROUND: The discovery of the novel photoreceptor, melanopsin-expressing retinal ganglion cells (mRGCs), has raised researchers' interest in photoreceptive tasks performed by the mRGC, especially in non-image-forming visual functions. In a prior study, we investigated the mRGC response to light stimuli independent of rods and cones with the four-primary illumination system, which modulates stimulus levels to the mRGC and cones independently, and mRGC baseline responses were recorded in the electroretinogram (ERG). METHODS: In the present study, we used the same illumination system to compare independent responses of the mRGC and cones in five subjects (mean +/- SD age, 23.0 +/- 1.7 years). The ERG waveforms were examined as direct measurements of responses of the mRGCs and cones to stimulation (250 msec). Implicit times (the time taken to peaks) and peak values from 30 stimuli given to each subject were analyzed. RESULTS: Two distinct positive peaks appeared in the mRGC response, approximately 80 msec after the onset of the stimuli and 30 msec after their offset, while no such peaks appeared in the cone response. The response to the mRGC stimulus was significantly higher than that to the cone stimulus at ~80 msec (p < 0.05) and tended to be higher than the cone stimulus at ~280 msec (p = 0.08). CONCLUSIONS: Implicit time of the first peak was much longer than that to the b-wave and this delay might reflect mRGC's sluggish responses. This is the first report of amplitudes and implicit time in the ERG from the response of the mRGC that is independent of rods and cones and obtained using the four-primary illumination system.  相似文献   

17.
The three major classes of neurons which comprise the primary visual pathway in retina are glutamatergic. These cells are generated in two separate developmental stages, with one subclass of photoreceptors (cones) and ganglion cells generated before birth; and the other subclass of photoreceptors (rods) and bipolar cells generated during the first week after birth. Gas chromatography/mass spectroscopy analysis coupled with a new method for collecting small samples of extracellular fluids from retina were used to determine the levels of endogenous glutamate present during differentiation and synaptogenesis of these different cell types. As expected the total retinal content of glutamate increased during the postnatal period in synchrony with the generation and maturation of glutamatergic cells. However, a significant proportion of the endogenous pool was found extracellularly at birth. Intracellular glutamate is localized within cell bodies and growing processes of cones and ganglion cells at this time but few glutamatergic synapses are present. The extracellular concentration of glutamate actually declined during the most active period of synaptogenesis, reaching very low levels in the adult. The high concentrations of extracellular glutamate in neonatal retina could play an important role in a variety of developmental events such as dendritic pruning, programmed cell death and neurite sprouting. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

18.
Information on the anatomy of the eye and the topography of cone photoreceptor cells in the retina is presented for the Nile Tilapia (Oreochromis niloticus). In adults, the shape and proportions of the ocular components of the prominent eye conform to the general form of fish eyes, as determined using cryo-sectioned eyes. The lens is approximately spherical and there is little variation in the distance from the centre of the lens to the border between the choroid and retina at a range of angles about the optical axis. The average ratio of the distance from the centre of the lens to the retina: lens radius (Matthiessen’s ratio) is 2.44:1. In retinal wholemounts, single and double (twin) cone photoreceptors, forming a square mosaic, are present. Peak photoreceptor densities for both morphological cone types are found in the temporal retina. Using peak cone densities and estimates of focal length from cryo-sectioned eyes, visual acuity is calculated to be 5.44 cycles per deg. The lack of apparent specific ocular or retinal specializations and the relatively low visual acuity reflect the lifestyle of the Nile Tilapia and may allow it to adapt to changes in visual environment in its highly variable natural habitat as well as contributing to the ‘ecological flexibility’ of this species.  相似文献   

19.
Regressive evolution of morphological features is a common evolutionary event. However, the relationship between structural degeneration and loss of physiological function is often unclear because the ancestral and derived states of a character are usually not available for comparison. Here, we report studies on retinomotor rhythms during development of the blind cavefish Astyanax mexicanus, a single teleost species consisting of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. The eyed and blind forms of Astyanax diverged from a common sighted ancestor within the past million years. Despite the absence of functional eyes in cavefish adults, optic primordia are formed in embryos, but then gradually arrest in development, degenerate, and sink into the orbits. Although a layered retina is formed in cavefish embryos, it is deficient in photoreceptor cells, and in some cases the retinal pigment epithelium has lost its pigmentation. We show that the capacity to exhibit light-entrained retinomotor rhythms has been conserved in the degenerating embryonic eyes of two different Astyanax cavefish populations. The results indicate that loss of circadian retinal function does not precede and is therefore not required for eye degeneration in the blind cavefish.  相似文献   

20.
In the retinas of lower vertebrates, retinal photoreceptors and melanin pigment granules of the retinal pigment epithelium (RPE) undergo characteristic movements in response to changes in light intensity and to signals from an endogenous circadian clock. To identify agents responsible for mediating light and/or circadian regulation of these retinomotor movements, we investigated the effects of hormones and neurotransmitters on cone, rod, and RPE movements in the green sunfish, Lepomis cyanellus. We report here that 3,4-dihydroxyphenylethylamine (dopamine) mimics the effect of light by inducing light-adaptive retinomotor movements in all three cell types. In isolated dark-cultured retinas, dopamine induced light-adaptive cone contraction with a half-maximal effect at 10(-8) M. This effect of dopamine was inhibited by antagonists with a potency order characteristic of D2 receptor mediation. The dopamine uptake blocker benztropine also induced light-adaptive cone contraction in isolated dark-cultured retinas, suggesting that there is continuous dopamine release in the dark but that concomitant uptake normally prevents activation of cone contraction. That dopamine plays a role in light regulation of cone movement is further suggested by the observation that light-induced cone contraction was partially inhibited by sulpiride, a selective D2 dopamine antagonist, or by Co2+, a blocker of synaptic transmission. Sulpiride also promoted dark-adaptive cone elongation in isolated light-adapted retinas, suggesting that continuous dopamine action is required in the light to maintain the light-adapted cone position. Dopamine can act directly on D2 receptors located on rod and cone inner/outer segments: dopamine induced light-adaptive retinomotor movements in isolated distal fragments of dark-adapted photoreceptors cultured in the dark. Together our results indicate that dopamine induces light-adaptive retinomotor movements in cones, rods, and RPE cells by activating D2 receptors. We suggest that, in vivo, dopamine plays a role in both light and circadian regulation of retinomotor movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号