首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The rapid morphogenetic movements that internalize the transitory larval epithelium and reorient the presumptive adult epidermis during the metamorphosis of the cellularioid cheilostome bryozoan, Bugula neritina, have been examined by light and electron microscopy and analyzed by experimentation with cytochalasin B (CB) and MgC12. The pallial epithelium is gradually drawn out over the aboral hemisphere as the larval ciliated epithelium (the corona and the pyriform organ) involutes. At the end of coronal involution the oral margin of the pallial epithelium constricts and the aboral hemisphere is pulled down against the everted sac. Ultrastructural and experimental evidence indicates that an equatorial contractile ring composed of a temporal alignment of CB-sensitive 5.5 nm microfilaments is responsible for the constriction of the oral margin of the pallial epithelium. This morphogenetic movement, in conjunction with the compression of the aboral hemisphere, juxtaposes the pallial epithelium with the oral epithelium of the everted sac. The pallial epithelium adheres to the neck and wall regions of the everted sac and begins a progressive contraction at its aboral margin, pulling the wall epithelium up over the aboral hemisphere. Ultrastructural examination reveals that the pallial cells contain apical bands of microfilaments and associated vesicles at this stage of metamorphosis. The position and time of appearance of the microfilaments in the pallial epithelium support the hypothesis that they generate the force for wall elevation. Histological and experimental data indicate that the compression of the aboral hemisphere at the umbrella stage and the final retraction of the apical disc are muscle-mediated morphogenetic movements. The constriction of the umbrellar margin and the elevation of the wall epithelium, on the other hand, appear to be caused by two distinct populations of microfilaments that assemble in different regions of the pallial epithelium at specific times during metamorphosis.  相似文献   

2.
Summary The larval morphology of the marine bryozoan Bowerbankia gracilis has been investigated by light and electron microscopy. The barrel-shaped larva (200 m long and 150 m in diameter) is light yellow without any apparent eyespots, although it is positively phototactic during its brief free-swimming existence. The primary morphological characteristics of the larva are: (1) a large corona that forms most of the larval surface, (2) a small apical disc without blastemas, (3) a deep pallial sinus lined by an extensive pallial epithelium, (4) an internal sac without regional specializations, and (5) a polypide rudiment in the oral hemisphere. This organization is characteristic of larvae of the ctenostome superfamily Vesicularioidea, and differs radically from the organization of all other bryozoan larvae examined. The major morphological differences occur in the size and organization of the apical disc, the pallial epithelium, and the internal sac. In most bryozoans, these regions of the larval epithelium represent rudiments of the polypide and the body wall epidermis of the ancestrula. The oral polypide rudiment, the extensive pallial epithelium, and the reduced internal sac in vesicularioid larvae indicate that their pattern of metamorphosis also differs radically from the metamorphoses of other bryozoans.Figure Abbreviations AB aboral - acr axial ciliary rootlet - ad apical disc - anc aboral nerve cord - ANT anterior - arm apical retractor muscle - b basal body - bf basal foot process - c corona - cc ciliated cleft - ce centriole - ci cilium - cl cupiform layer of the polypide rudiment - cp ciliary pit - cr ciliary rootlet - enr equatorial neural ring - g glandular cells of the pyriform organ - gl glycocalyx - go Golgi complex - gr granule - hcr horizontal ciliary rootlet - ic intercoronal cell - igf inferior glandular field - ip infrapallial cells - is internal sac - jp juxtapapillary cells - l lipid droplets - L lateral - m mesenchyme - m Type I mesenchyme cell - m Type II mesenchyme cell - m Type III mesenchyme cell - mb median band of the polypide rudiment - mc marginal cells of the apical disc - mi mitochondria - mr microridge - mv microvilli - nn nerve nodule - np neural plate - nu nucleus - O oral - oce oral ciliated epithelium - op opening to the internal sac - ovc oral vesicular collarette - p papilla of the pyriform organ - pa pallial cell - pe pallial epithelium - po pyriform organ - POS posterior - pp parasagittal patches of undifferentiated cells - pr polypide rudiment - rer rough endoplasmic reticulum - sc supracoronal cells - sg secretory granules - sgf superior glandular field - sp suprapallial cells - tc terminal cone - tf transitional filaments - u undifferentiated cells - va vacuole - vc vesicular cell - wc wedge-shaped cells of the apical disc - y yolk granule - za zonula adhaerens Caption Abbreviations Gp Glutaraldehyde-phosphate - Os Osmium  相似文献   

3.
Summary The settlement and metamorphosis of the marine bryozoan Bowerbankia gracilis has been examined by light and electron microscopy. The period of rapid morphogenesis consists of the following sequence of morphogenetic movements: 1) eversion of the internal sac, 2) retraction of the apical disc, 3) coronal involution and exposure of the pallial epithelium, and 4) closure of the internal coronal cavity. The eversion of the internal sac at the onset of metamorphosis coincides with a sudden reversal of the direction of beat of the coronal cilia. The reversed beating of the coronal cilia wafts the adhesive secreted by the internal sac over the metamorphosing larva, forming the pellicle. The internal sac is subsequently internalized and histolyzed with the corona and the other transitory larval tissues, and the extensive pallial epithelium forms the epidermis of the ancestrular body wall (cystid). Type I mesenchyme cells form an incomplete somatic mesothelium beneath the differentiating cystid epidermis, and Type II mesenchyme cells become mobile phagocytes. The main body cavity develops by the histolytic enlargement of the internal cavity formed during coronal involution. The apical disc degenerates and the polypide develops from rudiments in the oral hemisphere of the larva. The distinctive larval morphology and metamorphosis of vesicularioid ctenostomes are compared with other bryozoans, and possible evolutionary trends are considered.  相似文献   

4.
The larval morphology, settlement behavior, and the rapid morphogenetic movements that occur during the first 60 sec of metamorphosis of the cellularioid cheilostome bryozoan Bugula neritina have been examined and analyzed by light and electron microscopy. The larva attaches to the substratum at the onset of metamorphosis by the eversion of the internal sac. At the same time, the coronal cilia reverse their direction of beat, spreading an adhesive secreted by the neck region of the everting sac over the metamorphosing larva. During attachment, the larva goes through several configurations that coincide with the sequential contraction and relaxation of certain larval muscles. Histological and ultrastructural evidence indicates that the neck and wall regions of the internal sac are everted by the contraction of the muscles in the equatorial plane of the larva at the same time that the roof region in pulled toward the larval equator by the contraction of the axial muscles. The subsequent relaxation of the axial muscles allows the roof region to be everted by the antagonistic force generated by the sustained contraction of the equatorial musculature. After the roof region attaches to the substratum, the apical disc is temporarily retracted by a second contraction of the axial muscles. The apical disc subsequently reextends as the axial muscles relax just before coronal involution. A comparison of the ontogenetic sequence of rapid morphogenetic movements in the metamorphoses of cheilostome and ctenostome bryozoans indicates that cellularioid cheilostomes have undergone peramorphosis in the aspect of development.  相似文献   

5.
Sexually mature adults, embryos and larvae of the pterobranch Rhabdopleura normani from Bermuda were studied with light and electron microscopy. The sexes are separate among the zooids of a colony, but a given colony may contain females and males. In zooids of either sex the single gonad is associated with a large haemal sinus in the trunk sac and is displaced laterally (to the right or to the left). The wall of the gonad is composed of three layers: an outer metasomal peritoneum, an internal lining of germinal epithelium and an intervening genital haemal sinus. The mature gametes lie in the lumen within the gonad. The spermatozoon is characterized by an elongate nucleus, no obvious acrosome, a long mitochondrial filament in a midpiece appendix and a single flagellum with a 9+2 axoneme. Females brood 200 μm eggs and embryos in their distinctive, basally coiled tubes. The yolky eggs undergo radial cleavage and develop into ciliated, lecithotrophic, oblong larvae (400 μm in length) that are characterized by: (1) yellow coloration peppered with black pigment spots; (2) a deep ventral depression; (3) a posterior adhesive organ; (4) an anterior apical sensory organ; (5) an evenly ciliated epitdermis. The ventral depression is not invaginating endoderm, but is instead a glandular epithelium that evidently secretes the larval cocoon and the adult tube. Internally, the peritoneum of the coelomic cavities begins to split from the periphery of a large, central mass of yolky mesenchyme cells. The larva swims using cilia, but also undergoes contractions, evidently powered by the peritoneal cells, which constitute a myoepithelium. The discussion considers pterobranch affinities with other deuterostomes and with lophophorates.  相似文献   

6.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   

7.
The larval morphology and settlement of the vesicularioid ctenostome bryozoan Bowerbankia gracilis has been investigated by light and electron microscopy in an attempt to elucidate the mechanism of attachment to the substratum at the onset of metamorphosis. The oral epithelium in the free-swimming larva is infolded to form a glandular internal sac at the oral pole. The internal sac is not specialized into distinct regions, but consists of a uniform, simple columnar epithelium filled with secretory granules. The hemispherical internal sac is underlain by a cup-shaped layer of undifferentiated cells that constitutes the polypide rudiment. The cupiform layer of undifferentiated cells is in turn embraced by a network of muscle fibers called the rete muscularis. At the onset of metamorphosis, the larva constricts oro-laterally and the internal sac is everted against the substratum. As the sac everts, the glandular cells secrete an adhesive that is wafted up over the metamorphosing larva by the reversed beating of the coronal cilia. At the same time, the cupiform layer of undifferentiated cells flattens in the plane of the oro-lateral constriction and doubles in thickness. The cells of the cupiform layer undergo a corresponding transformation from short columnar cells to flask-shaped cells that bulge into the glandular cells of the internal sac. The narrow ends of the flask-shaped cells abut the strongly contracted muscle fibers of the rete muscularis. It is hypothesized that the contraction of the muscle fibers of the rete muscularis is responsible for the change in shape of the undifferentiated cells and, consequently, for the eversion of the internal sac. On the basis of this study and a review of the literature, it is concluded that attachment to the substratum at the onset of metamorphosis typically is effected by the eversion of an internal sac in larvae of the ctenostome superfamily Vesicularioidea.  相似文献   

8.
The organization of the nervous system and the histology and ultrastructure of the apical disc and the pyriform organ have been investigated by serial sections with light and electron microscopy for the larva of the vesiculariid ctenostome bryozoan Bowerbankia gracilis Leidy 1855. The nervous system consists of four major internal components: (1) a median-anterior nerve nodule; (2) an equatorial, subcoronal nerve ring; (3) paired aboral nerve cords; (4) paired antero-lateral nerve tracts. The nervous system is associated with the ciliated larval surface at the apical disc, the pyriform organ, the corona and the intercoronal cells. The paired aboral nerve cords extend from the apical disc to the nerve nodule, which gives rise to the paired antero-lateral nerve tracts to the pyriform organ and to paired lateral tracts that form the equatorial nerve ring. Ultrastructural evidence is provided for the designation of primary sensory cells in the neural plate of the apical disc and in the juxtapapillary regions of the pyriform organ. Efferent synapses are described between the equatorial nerve ring and the overlying coronal cells, which constitute the primary locomotory organ of the larva. The repertoire of potential functions of the apical disc and pyriform organ are discussed. It is concluded that the apical disc and pyriform organ constitute larval sensory organs involved in orientation and substrate selection, respectively. Their association with the major effector organs of the larva (the corona and the musculature) via the nervous system supports this interpretation.  相似文献   

9.
We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of “secondary” gastrulation during early metamorphosis.  相似文献   

10.
The larval epithelium of the sea urchin, Lytechinus pictus, consists of squamous cells and bands of columnar epithelial cells bearing cilia. During metamorphosis this tissue undergoes a series of rapid, complex changes. Through the scanning and transmission electron microscope, we describe and analyse these changes. The changes can be divided into three steps. (1) The larval arms bend away from the left side of the larva, exposing the urchin rudiment. Cells which are identical to smooth muscle cells are in a position to bring about this bending. (2) The squamous epithelial cells assume a cuboidal shape. This change in shape results in the collapse of the larval epithelium onto the presumptive aboral surface. These cells possess a subapical band of microfilaments. The cellular shape change but not the bending of the arms is reversibly inhibited by Cytochalasin B. These observations suggest a mechanism for this change. (3) The former lining of the vestibule of the urchin rudiment comes to lie over the collapsed larval tissue and forms the adult epithelium. At this point, after only one hour, the larva has assumed the external shape of an adult sea urchin.  相似文献   

11.
Using histological techniques and computer‐aided three‐dimensional reconstructions of histological serial sections, we studied the development of the olfactory and vomeronasal organs in the discoglossid frog Discoglossus pictus. The olfactory epithelium in larval D. pictus represents one continuous unit of tissue not divided into two separate portions. However, a small pouch of olfactory epithelium (the “ventromedial diverticulum”) is embedded into the roof of the buccal cavity, anteromedial to the internal naris. The lateral appendix is present in D. pictus through the entire larval period and disappears during the onset of metamorphosis. The disappearance of the lateral appendix at this time suggests that it is a typical larval organ related to aquatic life. The vomeronasal organ develops during hindlimb development, which is comparatively late for anurans. The development of the vomeronasal organ in D. pictus follows the same general developmental pattern recognized for neobatrachians. As with most anurans, the vomeronasal glands appear later than the vomeronasal organ. After metamorphosis, the olfactory organ of adult D. pictus is composed of a series of three interconnected chambers: the cavum principale, cavum medium, and cavum inferius. We suggest that the ventromedial diverticulum at the anterior border of the internal naris of larval D. pictus might be homologous with the ventral olfactory epithelium of bufonids and with the similar diverticulum of Alytes. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.  相似文献   

13.
14.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

15.
Fukui  Yoko 《Hydrobiologia》1991,214(1):137-142
The development of Haliplanella lineata, following fertilization in the laboratory, was studied by light and electron microscopy. Spawned ova were spherical, magenta in color and about 120–150 µm in diameter. Cleavage was holoblastic and radial. Gastrulation occurred by immigration and invagination. Eighteen hours after fertilization, the embryo became a swimming planula larva with an apical organ and ciliary tuft at the aboral end. In the laboratory, planulae lived for about 2 weeks in the swimming state but in no case was there any settlement by larvae in this study. The structural study of planulae concentrated on the development of the aboral ectoderm, because of the functional significance of its cellular organization in larval settlement.  相似文献   

16.
17.
The development of nervous system (NS) in the non-feeding vestibula larva of the sea urchin, Holopneustes purpurescens, and the feeding echinopluteus larva of Hemicentrotus pulcherrimus was examined by focusing on fate during metamorphosis. In H. purpurescens, the serotonergic NS (SerNS) appeared simultaneously and independently in larval tissue and adult rudiment, respectively, from 3-day post-fertilization. In 4-day vestibulae, an expansive aboral ganglion (450 × 100 μm) was present in the larval mid region that extended axons toward the oral ectoderm. These axons diverged near the base of the primary podia. An axonal bundle connected with the primary podia and the rim of vestopore on the oral side. Thus, the SerNS of the larva innervated the rudiment at early stage of development of the primary podia. This innervation was short-lived, and immediately before metamorphosis, it disappeared from the larval and adult tissue domains, whereas non-SerNS marked by synaptotagmin remained. The NS of 1-month post-fertilization plutei of H. pulcherrimus comprised an apical ganglion (50 × 17 μm) and axons that extended to the ciliary bands and the adult rudiment (AR). A major basal nerve of serotonergic and non-serotonergic axons and a minor non-serotonergic nerve comprised the ciliary band nerve. In 3-month plutei, axonal connection among the primary podia in the neural folds completed. The SerNS never developed in the AR. Thus, there was distinctive difference between feeding- and non-feeding larvae of the above sea urchins with respect to SerNS and the AR.  相似文献   

18.
Like many other cnidarians, corals undergo metamorphosis from a motile planula larva to a sedentary polyp. In some sea anemones such as Nematostella this process is a smooth transition requiring no extrinsic stimuli, but in many corals it is more complex and is cue-driven. To better understand the molecular events underlying coral metamorphosis, competent larvae were treated with either a natural inducer of settlement (crustose coralline algae chips/extract) or LWamide, which bypasses the settlement phase and drives larvae directly into metamorphosis. Microarrays featuring > 8000 Acropora unigenes were used to follow gene expression changes during the 12 h period after these treatments, and the expression patterns of specific genes, selected on the basis of the array experiments, were investigated by in situ hybridization. Three patterns of expression were common—an aboral pattern restricted to the searching/settlement phase, a second phase of aboral expression corresponding to the beginning of the development of the calicoblastic ectoderm and continuing after metamorphosis, and a later orally-restricted pattern.  相似文献   

19.
We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.  相似文献   

20.
The larva of Loxosoma pectinaricola Franzén has been studied using scanning and transmission electron microscopy. The embryo develops surrounded by an egg envelope attached to the brood chamber. The newly released larva measures about 100 μm in length and is characterized by a prominent apical organ, stalked vesicles, paired lateral sense organs and a prototroch. The apical organ consists of at least four cell types: (1, 2) two types of ciliated cells, (3) vacuolated cells and (4) myoepithelial cells. The apical organ and frontal ganglion are tightly juxtaposed in the upper tier of the episphere. The stalked vesicles each consisting of two cells are unique evaginations of the epidermis. There are about twenty stalked vesicles with a maximum diameter of about 20.0 μm. The ciliated, knob-shaped, paired lateral sense organs are situated fronto-laterally on the episphere. The prototroch is comprised of a row of contiguous prototroch cells each containing about eighteen long cilia. The apical organ, frontal ganglion and paired lateral sense organs are suggested to be sensory structures that play an important role in active locomotion, settlement site selection and metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号