首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prey must balance gains from activities such as foraging and social behavior with predation risk. Optimal escape theory has been successful in predicting escape behavior of prey under a range of risk and cost factors. The optimal approach distance, the distance from the predator at which prey should begin to flee, occurs when risk equals cost. Optimal escape theory predicts that for a fixed cost, the approach distance increases as risk increases. It makes no predictions about approach distance for prey in refuges that provide only partial protection or about escape variables other than approach distance, such as the likelihood of stopping before entering refuge and escape speed. By experimentally simulating a predator approaching keeled earless lizards, Holbrookia propinqua, the predictions of optimal escape theory for two risk factors, predator approach speed and directness of approach were tested. In addition, predictions that the likelihood of fleeing into refuge without stopping and the speed of escape runs increase with risk, in this case predator approach speed, and that lizards in incompletely protective refuges permit closer approach than lizards not in refuges were also tested. Approach distance increased with predator approach speed and directness of approach, confirming predictions of optimal escape theory. Lizards were more likely to enter refuge and ran faster when approached rapidly, verifying that predation risk affects escape decisions by the lizards for escape variables not included in optimal escape theory. They allowed closer approach when in incompletely protective refuges than when in the open, confirming the prediction that risk affects escape decisions while in refuge. Optimal escape theory has been highly successful, but testing it has led to relative neglect of important aspects of escape other than approach distance.  相似文献   

2.
Escape theory predicts that flight initiation distance (predator–prey distance when escape begins) increases as predation risk increases and decreases as cost of fleeing increases. Scant information is available about the effects of some putative predation risk factors and about interaction between simultaneously operating risk and cost of fleeing factors on flight initiation distance and distance fled. By simulating an approaching predator, I studied the effects of body temperature (BT), distance to nearest refuge, and eye contact with a predator, as well as simultaneous effects of predator approach speed and female presence/absence on escape behavior by a small ectothermic vertebrate, the lizard Sceloporus virgatus. Flight initiation distance decreased as BT increased, presumably because running speed increases as BT increases, facilitating escape. Distance to nearest refuge was unrelated to BT or flight initiation distance. Substrate temperature was only marginally related, and air temperature was not related to flight initiation distance. Eye contact did not affect flight initiation during indirect approaches that bypassed lizards by a minimum of 1 m, but an effect of eye contact found in other studies during direct approach might occur. Predator approach speed and presence of a female interactively affected flight initiation distance, which increased as speed increased and decreased when a female was present. In the presence of a female, flight initiation distance was far shorter than when no female was present. The high cost of forgoing a mating opportunity accounts for the interaction because the difference between female presence and absence is greater when risk is greater.  相似文献   

3.
Escape theory predicts that the probability of fleeing and flight initiation distance (predator–prey distance when escape begins) increase as predation risk increases and decrease as escape cost increases. These factors may apply even to highly cryptic species that sometimes must flee. Horned lizards (Phrynosoma) rely on crypsis because of coloration, flattened body form, and lateral fringe scales that reduce detectability. At close range they sometimes squirt blood‐containing noxious substances and defend themselves with cranial spines. These antipredatory traits are highly derived, but little is known about the escape behavior of horned lizards. Of particular interest is whether their escape decisions bear the same relationships to predation risk and opportunity costs of escaping as in typical prey lacking such derived defenses. We investigated the effects of repeated attack and direction of predator turning on P. cornutum and of opportunity cost of fleeing during a social encounter in P. modestum. Flight initiation distance was greater for the second of two successive approaches and probability of fleeing decreased as distance between the turning predator and prey increased, but was greater when the predator turned toward than away from a lizard. Flight initiation distance was shorter during social encounters than when lizards were solitary. For all variables studied, risk assessment by horned lizards conforms to the predictions of escape theory and is similar to that in other prey despite their specialized defenses. Our findings show that these specialized, derived defenses coexist with a taxonomically widespread, plesiomorphic method of making escape decisions. They suggest that escape theory based on costs and benefits, as intended, applies very generally, even to highly cryptic prey that have specialized defense mechanisms.  相似文献   

4.
Pollen flow of cultivated rice measured under experimental conditions   总被引:15,自引:0,他引:15  
The pollen flow pattern of a cultivated rice variety, Minghui-63, was studied at horizontal and vertical levels under experimental conditions. Data obtained from pollen traps for six designed populations (as pollen sources) at different intervals showed that the dispersal of rice pollen decreased with the increase of distance from pollen sources and that the rice pollen flow was significantly influenced by weather conditions, particularly by wind direction and speed. For a mean wind speed of 2.52 m/s in a downwind direction, the observed distance of rice pollen dispersal was 38.4 m, indicating that rice pollen grains normally disperse at a relatively small range. However, the maximum distance of rice pollen flow could be up to 110 m, using regression analysis of pollen flow and wind speed, when the wind speed reached 10 m/s in this study. The frequency of pollen flow was positively correlated with pollen source size within a given range, suggesting that pollen flow will occur effectively at a considerable rate in rice fields with sufficiently large pollen sources. In addition, many more pollen grains were detected at the height of 1.0–1.5 m than at 2.0 m, indicating that rice pollen mainly disperses at relatively low heights. Results from this study are useful both for minimizing transgene escape from transgenic rice and in situ conservation of wild relatives of rice, as well as for hybrid seed production, where an effective isolation buffer zone needs to be established.  相似文献   

5.
The copepod Acartia tonsa is very sensitive to hydrodynamicsignals, including those made by approaching predators, andresponds with a vigorous escape jump. Whether the presence ofmoderate turbulence changes this ability to detect hydrodynamicsignals was investigated by comparing the response of copepodsto velocity gradients created by a siphon flow in turbulentand still water. Turbulence decreased the distance at whichA. tonsa initiated escapes from the siphon and increased thecapture rate, indicating decreased sensitivity to hydrodynamicsignals, but did not trigger unnecessary escape reactions thatmight produce fatigue.  相似文献   

6.
Models of different sizes, shapes, and colours evoked, oriented escape responses in schools of Chromis cyanea in their natural coral-reef habitat. Divers filmed these responses; from the films, the distance of the school from the model at the instant of response (reaction distance) was calculated. For a given model, reaction distance was independent of the speed of the model's approach. Darker coloured models were more effective in causing escape (yielded greater reaction distance) than lighter coloured models, suggesting contrast as an important feature of the stimulus. Larger models were more effective than smaller ones. Habituation to repeated stimuli was absent for inter-trial intervals from 0·5 to 4 min. Natural behaviour of Chromis suggests that cues such as sound, vibration, and details of shape, colours, and motion also play a role in triggering escape.  相似文献   

7.
Gilbert  John J. 《Hydrobiologia》1987,147(1):235-238
Direct observations show that almost all (97%) Polyarthra remata caught in the inhalant current of Daphnia pulex avoid inhalation by initiating escape responses. Microvideographic analysis shows that these responses are initiated, on average, 0.24 mm (about 2.5 body lengths) from the inhalant opening of the branchial chamber, when the Polyarthra are moving at a velocity of about 1.4 mm s–1 (about 6 times their normal swimming speed — 0.24 mm s–1). The stimulus for the escape response could be rapid acceleration or, more likely, shear. The average distance traveled during an escape response is at least 1.25 mm (about 12 body lengths).The Polyarthra escape response can provide a very effective defense against interference from Daphnia and may greatly increase the ability of Polyarthra spp. to coexist with Daphnia.  相似文献   

8.
The pre‐eminent model of flight initiation distance assumes that the function relating predation risk to distance between predator and prey is constant. However, the risk–distance function can change dramatically during approaches by predators. Changes in predator behavior during approach and in availability of benefits (e.g. food or potential mates) may alter risks and/or costs during encounters. Thus, prey should be able to respond appropriately to changes in cues to risk, such as predator approach speed. Under the assumption that prey assess risk in real time, it was predicted that flight initiation distance (distance between predator and prey when escape begins) decreases when approach speed increases and increases when approach speed decreases during an encounter. Effects of single, abrupt changes from slower to faster approach or the reverse were studied in a lizard, Anolis lineatopus. Flight initiation distances were determined solely by final approach speed, being nearly identical for: (1) continuously fast approaches and approaches initially at the slower and finally at the faster speed and (2) for continuously slower approaches and approaches initially at faster and finally at slower speed. Escape should be adjusted to match changes in risk and cost caused by changes in predator behavior, ability to escape, and costs of escape as attacks unfold. A recent model by Broom and Ruxton [Behavioural Ecology (2004) vol. 16, pp. 534—540] predicts that cryptic prey should stay motionless until detected, then flee immediately. Our results suggest that current escape models can be applied to prey escape strategies when cues to risk change, by assuming that prey base decisions on the current relationship between risk and distance. Empirical studies are needed to test predictions concerning continuous risk assessment.  相似文献   

9.
10.
Many marine planktonic organisms create water currents to entrainand capture food items. Rheotactic prey entrained within thesefeeding currents often exibit escape reactions. If the directionof escape is away from the feeding current, the prey may successfullydeter predation. If the escape is towards the center of thefeeding current, the prey will be re-entrained towards its predatorand remain at risk of predation. The direction of escape isdependent on (i) the ability of the prey to escape in a directiondifferent than its pre-escape orientation and (ii) the orientationcaused by the interaction of the prey's body with the movingfluid. In this study, the change in orientation of Acartia hudsonicanauplii as a result of entrainment within the feeding currentof Euchaeta rimana, a planktonic predatory copepod, was examined,When escaping in still water, A.hudsonica nauplii were ableto vary their pre-escape direction by only 10. This allowsonly a limited ability to escape in a direction different thantheir pre-escape orientation. Analyses of the feeding currentof E.rimana show the flow speed to be most rapid in the centralregion with an exponential decrease in speed distally. In contrast,flow vorticity is minimal in the center of the feeding currentand maximal at 1.75 mm along the antennae. As a result, thedegree of rotation of the prey towards the center of the feedingcurrent shows a strong dependency on the prey's location withinthe feeding current. The feeding current of E.rimana rotatedthe prey 14 when near the center of the flow field and up to160 when located more distal in the feeding current Since theprey's escape abilities cannot compensate for the rotation dueto the flow, this mechanism will maintain the escaping preywithin the feeding current of their predator. Therefore, thefeeding current facilitates predatory copepods in capturingprey by (i) increasing the amount of water which passes overtheir sensors and through their feeding appendages and (ii)controlling the spatial orientation of their prey prior to escape.  相似文献   

11.
Gene flow between cultivated and wild sunflowers   总被引:6,自引:0,他引:6  
With the development of transgenic crops, concern has been expressed regarding the possible escape of genetically-engineered genes via hybridization with wild relatives. This is a potential hazard for sunflowers because wild sunflowers occur as weeds in fields where cultivated sunflowers are grown and hybridization between them has been reported. In order to quantify the potential for gene escape, two experimental stands of sunflower cultivars were planted at two sites with different rainfall and altitude profiles. Populations of wild plants were planted at different distances from each cultivar stand. An allele homozygous in the cultivar (6Pgd-3-a), but absent in the wild populations, was used as a molecular marker to document the incidence and rate of gene escape from the cultivar into the wild populations of sunflowers. Three-thousand achenes were surveyed to determine the amount of gene flow from the cultivated to the wild populations. The marginal wild populations (3 m from the cultivar) showed the highest percentage (27%) of gene flow. Gene flow was found to decrease with distance; however, gene flow occurred up to distances of 1000 m from the source population. These data suggest that physical distance alone will be unlikely to prevent gene flow between cultivated and wild populations of sunflowers.  相似文献   

12.
The escape response of Atlantic cod larvae (Gadus morhua) 25 and 47 days post hatch (dph) - either fed or deprived of food for three days - was studied. Larval escape responses were provoked by water movement from the suction of a fixed-position pipette. Escape latency, distance, speed, burst speed, and vertical and lateral escape angles were quantified using motion tracking software designed for 3-D silhouette video recordings. Escape performance, expressed as escape distance and escape speed, improved with age. The escape angles were normally distributed and highly variable, ranging from − 170° to 170° and − 40° to 105° for lateral and vertical escape angles respectively. No food deprivation-induced effects in any of the behaviours were found, suggesting that there are no condition-related behavioural effects (size-independent effects) in escape response performance after 3 d of food deprivation. This may reflect a negligible difference in the cost/benefit equation for fed vs. food-deprived larvae in performing an escape response when under attack.  相似文献   

13.
Economic escape models predict escape decisions of prey which are approached by predators. Flight initiation distance (FID, predator–prey distance when prey begins to flee) and distance fled (DF) are major variables used to characterize escape responses. In optimal escape theory, FID increases as cost of not fleeing also increases. Moreover, FID decreases as cost of fleeing increases, due to lost opportunities to perform activities that may increase fitness. Finally, FID further increases as the prey's fitness increases. Some factors, including parasitism, may affect more than one of these predictors of FID. Initially, parasitized prey may have lower fitness as well as impaired locomotor ability, which would avoid predation and/or reduce their foraging ability, further decreasing the opportunity of fleeing. For example, if parasites decrease body condition, prey fitness is reduced and escape ability may be impaired. Hence, the overall influence of parasitism on FID is difficult to predict. We examined relationships between escape decisions and different traits: parasite load, body size and body condition in the Balearic lizard, Podarcis lilfordi. Lizards that showed higher haemogregarines load had longer FID and shorter DF. Although results did not confirm our initial predictions made on the basis of optimal escape theory, our findings suggest that parasites can alter several aspects of escape behaviour in a complex way.  相似文献   

14.
Summary Flies (Musca domestica) avoid danger by initiating a rapid jump followed by flight. To identify the visual cues that trigger the escape response in the housefly, we measured the timing and probability of escapes when the fly was presented with a variety of visual stimuli created by moving targets toward it. Our results show that an escape response is triggered by an approaching dark disk, but not by a receding dark disk. On the other hand, a bright disk elicits escape only when it recedes. A disk with black and white rings is less effective at eliciting escape than is a dark solid disk of the same size. This indicates that the darkening contrast produced by an approaching stimulus is a more crucial parameter than expansion cues contained in the optical flow. Escape is also triggered by a horizontally moving dark edge, but not by a moving bright edge or by a grating. An examination of several visual parameters reveals that the darkening contrast, measured from the onset of stimulation to the start of escape is nearly constant for a variety of stimuli that trigger escape reliably. Thus darkening contrast, coupled with motion may be crucial in eliciting the visually evoked escape response. Other visual parameters such as time-to-contact or target angular velocity seem to be relatively unimportant to the timing of escapes.Abbreviations P s Probability of successful escape - r disk radius of disk target - r arena radius of shielding arena - v disk linear velocity of disk target - v edge linear velocity of edge - d disk angular velocity of disk target boundary - edge angular velocity of edge - escape target distance at escape - d start target distance before onset of target movement - h edge height of the edge above fly - x start distance from corner of triangle to start position of edge (0 or 50 mm) - x escape distance from corner of triangle to the position of the edge when the fly escapes - x center distance from corner of triangle to point above the center of the pad - x total distance from the corner of the triangle to the base (height of triangle = base of triangle)  相似文献   

15.
1. This study investigated the effect of temperatures ranging from 10.8 to 34.2 °C on seven walking parameters of an egg parasitoid, Anaphes listronoti. Those responses were compared with a theoretical kinetic model in order to disentangle the kinetic response of the insect from its integrated response. 2. Walking speed increased continuously with temperature, but walking distance and duration were maximised between 25 and 30 °C, and decreased at higher and lower temperatures. At the lowest temperature, females unexpectedly walked a greater distance and for a longer duration in comparison with intermediate temperatures. 3. The number of walking bouts followed the same polynomial trend as walking distance and duration, with a maximum between 30 and 35 °C. The duration of walking bouts was maximised at 20 °C and decreased at lower and higher temperatures, whereas the duration of resting bouts linearly decreased with increasing temperature. There was no effect of temperature on the turning rate of females. 4. For A. listronoti, walking speed and duration of resting bouts followed the kinetic response, but the other behavioural components did not, especially at the lowest and highest temperatures. Walking distance and duration were higher than expected under the kinetic response at 10.8 °C and lower than expected at 34.2 °C. This pattern suggests an integrated response combining behavioural escape from adverse temperature and energy saving. 5. This detailed analysis of the walking behaviour of A. listronoti illustrates the complexity of insect behavioural responses to temperature and the difficulty involved in assessing underlying mechanisms.  相似文献   

16.
Optimal escape theory seeks to explain variation in the distanceto an approaching predator at which the prey initiates escape(flight initiation distance). Flight initiation distance increaseswhen predators pose a greater threat and decreases when escapecosts increase. Although optimal escape theory has been highlysuccessful, its predictions have been tested primarily for speciesthat escape to discrete refuges, and most studies have focusedon single risk or cost factors. We present data from two experimentsin which two risks or a risk and a cost varied in Bonaire whiptaillizards (Cnemidophorus murinus) that escaped without enteringrefuges. Our data verify several predictions about optimal escapefor nonrefuging lizard prey. Two risk factors, speed and directnessof approach by the predator, interacted. Directly approachedlizards had greater flight initiation distances than did indirectlyapproached lizards when approached rapidly, but shorter flightinitiation distances when approached slowly. Flight initiationdistance was shorter in the presence of food and during slowversus rapid approaches, but contrary to expectation, food presenceand approach speed did not interact. This would be explainedif cost curves are nonlinear or if they are parallel ratherthan intersecting when the predator reaches the prey. More empiricalwork is needed to determine which risk and cost factors actadditively and which act synergistically. The absence of interactionbetween the risk and cost factors suggests that cost curveswere nonlinear.  相似文献   

17.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   

18.
Cost‐benefit models of escape behaviour predict how close a prey allows a predator to approach [flight initiation distance (FID)] based on cost of not fleeing (predation risk) and cost of fleeing (loss of opportunities). Models for FID have been used with some success to predict distance fled (DF). We studied effects of foraging opportunity cost of fleeing and examined differences between age‐sex groups in the omnivorous Balearic Lizard, Podarcis lilfordi. Balearic lizards forage on the ground for invertebrate prey and climb the thistle Carlina corymbosa to forage on its inflorescences. We studied escape behaviour in three experimental groups, with human beings as simulated predators: lizard foraging above ground on C. corymbosa, foraging on the ground away from thistles and on the ground with cut inflorescences. Flight initiation distance was shorter for lizards with cut inflorescences than for (1) lizards above ground due to the greater risk above ground due to conspicuousness of black lizards on yellow flowers; and (2) lizards on ground away from flowers due to the cost of leaving while feeding. The only age‐sex difference was slightly greater FID for adult males than subadults, presumably because larger adult males are more likely to be attacked by predators. Other potential factors affecting this difference are discussed. Experimental group and age‐sex group did not interact for FID or DF. Because lizards foraging on inflorescences above ground fled to the base of the plants to refuge provided by spiny thistle leaves, their DF was shorter than in the other groups, which fled across the ground, usually without entering refuge. DF did not differ between groups on the ground or among age‐sex groups. The predicted shorter DF for lizards with cut inflorescences than on ground without inflorescences did not occur. We hypothesize that the opportunity cost was small due to the abundance of blooming thistles and that DF may be less sensitive to opportunity cost than FID.  相似文献   

19.
Optimal escape theory predicts that animals should flee at an optimal distance from the approaching predator (flight initiation distance, FID). However, FID usually increases with increasing alert distance (AD) or starting distance (SD). As an explanation for this pattern, the “flush early and avoid the rush” (FEAR) hypothesis states that prey should escape soon after detecting an approaching predator due to the cost of continuously monitoring risk. However, the positive relationship observed may also result from a mathematical artefact. Meanwhile, it is unknown whether animals would consistently follow this rule in different environmental contexts. We explored escape behaviours in light-vented bulbuls (Pycnonotus sinensis) perched at different heights. FID generally increased with increasing AD and decreasing perch height. The positive relationships between AD and FID were outside the 95% confidence levels of simulated slopes from Monte Carlo simulations, suggesting that the relationships observed reflect biological effects rather than merely a mathematical artefact. Increasing perch height was also associated with longer buffer distance (defined as FID minus AD or SD), suggesting that the birds tend to delay their flush after detecting an approaching predator when perched high. The effects of environmental contexts (and the associated predation risk) on the AD-FID relationship should be considered when performing inter-specific comparisons or meta-analyses.  相似文献   

20.
Some aspects of escape predicted by theoretical models are intended to apply universally. For example, flight initiation distance (distance between an approaching predator and prey when escape begins) is predicted from predation risk and the costs of escaping. Escape tactics and refuge selection are not currently predicted by theoretical models, but are expected to vary with structural features of the habitat. One way of studying such variation is to compare aspects of antipredatory behavior among sympatric species that differ in habitat or microhabitat use. In an assemblage of lizards in northwestern Namibia, we conducted experiments to test predictions of escape theory for three risk factors in representatives of three families and observed escape tactics in additional species. As predicted by escape theory, flight initiation distance increased with directness of a predator's approach and predator speed in Agama planiceps, Mabuya acutilabris, and Rhotropus boultoni, and with distance from refuge in M. acutilabris. As predicted by theory, the probability of entering refuge increased with risk in R. boultoni. All available data indicate that flight initiation distance and refuge entry by lizards conform to theoretical predictions. Escape tactics varied greatly as a function of habitat type: (1) arboreal species fled up and around trees and sometimes entered tree holes; (2) saxicolous species used rock crevices as refuges, but differed in tactics prior to entering refuges; and (3) terrestrial species fled into bushes or other vegetation, often to the far sides of them. Some M. acutilabris entered small animal burrows or buried themselves in sand beneath bushes. Escape tactics varied even among congeners in Mabuya, highlighting the important effect of habitat structure on them. Although habitat partitioning has traditionally been viewed as favoring species coexistence, an interesting by‐product appears to be structuring of escape tactics in lizard communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号