首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methanotrophs can oxidize methane to carbon dioxide through sequential reactions catalyzed by a series of enzymes including methane monooxygenase, methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase. When suspensions of methanotrophic bacteria of Methylosinus trichosporium IMV 3011 were incubated at 32°C with methane and oxygen, there was an extracellular accumulation of methanol from methane oxidation in response to carbon dioxide addition. Maximal accumulation of methanol was achieved with 40% carbon dioxide in the mixed reaction gases. A continuous experiment was performed in a continuous ultrafiltration reactor. The optimum gas mixture containing 20% (v v-1) methane, 20% oxygen, 20% nitrogen and 40% carbon dioxide was used to provide substrates and to maintain the transmembrane pressure. The product (methanol) was removed in the eluate buffer. The initial methanol concentration in the eluate buffer was 8.22 μmol L-1. The bioreactor was operated continuously for 198 h without obvious loss of productivity.  相似文献   

2.
13C NMR was used to study the effect of oxygen on methanol oxidation by a type II methanotrophic bacterium isolated from a bioreactor in which methane was used as electron donor for denitrification. Under high (35–25%) oxygen conditions the first step of methanol oxidation to formaldehyde was much faster than the following conversions to formate and carbon dioxide. Due to this the accumulation of formaldehyde led to a poisoning of the cells. A more balanced conversion of 13C-labelled methanol to carbon dioxide was observed at low (1–5%) oxygen concentrations. In this case, formaldehyde was slowly converted to formate and carbon dioxide. Formaldehyde did not accumulate to inhibitory levels. The oxygen-dependent formation of formaldehyde and formate from methanol is discussed kinetically and thermodynamically. Journal of Industrial Microbiology & Biotechnology (2001) 26, 9–14. Received 04 March 2000/ Accepted in revised form 07 November 2000  相似文献   

3.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

4.
The DEAE-cellulose linked cells of Methylosinus trichosporium displaying high specific methane mono-oxygenase activity (66 mumol methane oxidized/h mg cells) were used for methanol biosynthesis from biogas derived methane in a batch and a continuous cell reactor. The optimum cell-to-carrier ratio was determined to be 0.5 g cells/g dry weight cellulose. Batch experiments indicated that 100 mM phosphate ion concentration was necessary to inhibit further oxidation of methanol; excess oxygen supply favored methanol accumulation with an increase in methane conversion efficiency to 27%. A pulse of 40 mM sodium formate at the end of 6 h resulted in restoration of methanol accumulation by regenerating NADH(2) required for the sustained activity of methane mono-oxygenase. Maximum methanol level of 50 mumol/mg cells was obtained in the batch reactor. In a standard 50-mL ultrafiltration continuous reactor, the covalently linked cells produced methanol at a continuous rate of 100 mumol/h for the first 10 h, after which the methanol accumulation rate fell low due to the depletion of NADH(2). The methanol accumulation could be stimulated by supplying sodium formate (40 mM) in either 20 or 100 mM phosphate buffer. Maximum methanol accumulation rate of 267 mumol/h was obtained when 20 mM formate was supplied in the feed stream containing 100 mM phosphate ions, and this level of biosynthesis was maintained for over 72 h. The stoichiometric balance made at various points of formate addition indicated that the molar amount of methanol generated at steady state is dependent on the equimolar addition of sodium formate to the feed. The half-life t(1/2) and thermal denaturation rate constant K(d) were computed to be 108 h and 6.42 x 10(-3) h(-1), respectively.  相似文献   

5.
The oxidation of one carbon compounds (methane, methanol, formaldehyde, formate) and primary alcohols (ethanol, propanol, butanol) supported the assimilation of [1-14C]acetate by cell suspensions of type I obligate methylotroph; Pseudomonas methanica, Texas strain, and type II obligate methylotroph, Methylosinus trichosporium, strain PG. The amount of oxygen consumed and substrate oxidized correlated with the amount of [1-14C]acetate assimilated during oxidation of C-1 compounds and primary alcohols.Oxidation of methanol, formaldehyde, and primary alcohols in extracts of Pseudomonas methanica, Texas strain, and Methylosinus trichosporium, strain PG, was catalyzed by a phenazine methosulfate linked, ammonium ion dependent methanol dehydrogenase. The oxidation of aldehydes was catalyzed by a phenazine methosulfate linked, ammonium ion independent aldehyde dehydrogenase. Formate was oxidized by a NAD+ linked formate dehydrogenase.Deceased.This work was supported by Grant GB 8173 from the National Science Foundation and by a grant from the Robert A. Welch Foundation.  相似文献   

6.
The yeast Hansenula polymorpha was grown in a chemostat using either methanol or sorbitol as substrate or a mixture of both. Methanol alone could be utilized up to a dilution rate (D) of 0.18 h-1, and sorbitol allowed growth at D's higher than 0.52 h-1. In combination with sorbitol, methanol was completely utilized in the mixture even up to a D of 0.3 h-1, and partially utilized at higher D's, To elucidate the basis of methanol utilization at high D's, enzyme activities on the single substrates and on the substrate mixture were compared. At D's above 0.3 h-1 an increase of formate dehydrogenase activity was evident, an enzyme involved in the oxidation of methanol to carbon dioxide. It was concluded that at high D's large amounts of methanol were oxidized to generate energy. This was proved with 14C-methanol, and it was found that in the range of partial methanol utilization approximately 75% of methanol was converted to carbon dioxide and 25% incorporated into cell material.Abbreviation D dilution rate  相似文献   

7.
A cyclone reactor for microbial fermentation processes was developed with high oxygen transfer capabilities. Three geometrically similar cyclone reactors with 0.5?l, 2.5?l and 15?l liquid volume, respectively, were characterized with respect to oxygen mass transfer, mixing time and residence time distribution. Semi-empirically correlations for prediction of oxygen mass transfer and mixing times were identified for scale-up of cyclone reactors. A volumetric oxygen mass transfer coefficient k L a of 1.0?s?1 (available oxygen transfer rate with air: 29?kg?m?3?h?1) was achieved with the cyclone reactor at a volumetric power input of 40?kW?m?3 and an aeration gas flow rate of 0.2?s?1. Continuous methanol controlled production of formate dehydrogenase (FDH) with Candida boidinii in a 15?l cyclone reactor resulted in more than 100% improvement in dry cell mass concentration (64.5?g?l?1) and in about 100% improvement in FDH space-time yield (300?U?l?1?h?1) compared to steady state results of a continuous stirred tank reactor.  相似文献   

8.
Summary

The oxygen consumption rate (?O2) for Potamonauteus warreni Calman (= Potamon warreni (Calman) kept in 25 °C water was 34,4 μmol 1?1 O2 kg?1 and after 72 hours in 98% R.H. air the rate was 31,9 μmol 1?1 O2 kg?1 min?1. The ?O2 values for each of the two groups are not significantly different (P > 0,05). The partial oxygen tension of pre-branchial (v = venous) haemolymph (PvCO2) is 15,3 mm Hg in water and 13,0 mm Hg in air); partial carbon dioxide tension of pre-branchial (v) haemolymph (PvCO2) is 13,2 mm Hg in water and 13,0 mm Hg in air); the total carbon dioxide concentration in pre-branchial (v) haemolymph (CvCO2) tot. is 12,3 mmol 1?1 in air and 13,9 mmol 1?1 in water) are not significantly different for the two groups (P > 0,05). The haemolymph pH and the lactate concentration for crabs in water was found to be 7,51 and 0,38 mmol 1?1 respectively. No significant differences were found in pre-branchial haemolymph oxygen tension, carbon dioxide tension, total carbon dioxide content, haemolymph pH, lactate level, chloride concentration, P50 and haemocyanin-oxygen cooperativity in control crabs kept in water, and experimental crabs held in air for 72 hours. The chloride concentration, (327,0 mmol 1?1) for crabs kept in water does not differ from that of crabs held in air for 72 hours but is at least 15% higher than the sodium concentration (255 mmol 1?1) for crabs kept in water. The gill surface area is 520 mm2 g?1 wet body mass; on average 9,2 gill platelets (lamellae) can be found on a gill length of one millimetre. Each lamella is spaced 60–70 μm apart, each with a thickness of 30–40 μm. It is concluded that P. warreni may be described as a truly amphibious fresh-water crab.  相似文献   

9.
Forests in the south-eastern United States experienced a prolonged dry spell and above-normal temperatures during the 1995 growing season. During this episode, nearly continuous, eddy covariance measurements of carbon dioxide and water vapour fluxes were acquired over a temperate, hardwood forest. These data are used to examine how environmental factors and accumulating soil moisture deficits affected the diurnal pattern and magnitude of canopy-scale carbon dioxide and water vapour fluxes. The field data are also used to test an integrative leaf-to-canopy scaling model (CANOAK), which uses micrometeorological and physiological theory, to calculate mass and energy fluxes. When soil moisture was ample in the spring, peak rates of net ecosystem CO2 exchange (NF) occurred around midday and exceeded 20 μmol m?2 s?1. Rates of NK were near optimal when air temperature ranged between 22 and 25°C. The accumulation of soil moisture deficits and a co-occurrence of high temperatures caused peak rates of daytime carbon dioxide uptake to occur earlier in the morning. High air temperatures and soil moisture deficits were also correlated with a dramatic reduction in the magnitude of NE. On average, the magnitude of NE decreased from 20 to 7 μmol m?2 s?1 as air temperature increased from 24 to 30°C and the soil dried. The CANAOK model yielded accurate estimates of canopy-scale carbon dioxide and water vapour fluxes when the forest had an ample supply of soil moisture. During the drought and heat spell, a cumulative drought index was needed to adjust the proportionality constant of the stomatal conductance model to yield accurate estimates of canopy CO2 exchange. The adoption of the drought index also enabled the CANOAK model to give improved estimates of evaporation until midday. On the other hand, the scheme failed to yield accurate estimates of evaporation during the afternoon.  相似文献   

10.
Interspecies hydrogen transfer was studied in Desulfovibrio vulgaris-Methanosarcina barkeri mixed cultures. Experiments were performed under batch and continuous growth culture conditions. Lactate or pyruvate was used as an energy source. In batch culture and after 30 days of simultaneous incubation, these organisms were found to yield 1.5 mol of methane and 1.5 mol of carbon dioxide per mol of lactate fermented. When M. barkeri served as the hydrogen acceptor, growth yields of D. vulgaris were higher compared with those obtained on pyruvate without any electron acceptor other than protons. In continuous culture, all of the carbon derived from the oxidation of lactate was recovered as methane and carbon dioxide, provided the dilution rate was minimal. Increasing the dilution rate induced a gradual accumulation of acetate, causing acetate metabolism to cease at above μ = 0.05 h−1. Under these conditions all of the methane produced originated from carbon dioxide. The growth yields of D. vulgaris were measured when sulfate or M. barkeri was the electron acceptor. Two key observations resulted from the present study. First, although sulfate was substituted by M. barkeri, metabolism of D. vulgaris was only slightly modified. The coculture-fermented lactate produced equimolar quantities of carbon dioxide and methane. Second, acetogenesis and methane formation from acetate were completely separable.  相似文献   

11.
14C-tracer techniques were used to examine the metabolism of methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in sediments from the profundal and littoral zones of eutrophic Wintergreen Lake, Michigan. Methanogens were primarily responsible for the metabolism of methanol, monomethylamine, and trimethylamine and maintained the pool size of these substrates below 10 μM in both sediment types. Methanol and methylamines were the precursors for less than 5 and 1%, respectively, of the total methane produced. Methanol and methylamines continued to be metabolized to methane when the sulfate concentration in the sediment was increased to 20 mM. Less than 2% of the total acetate production was derived from carbon dioxide reduction. Hydrogen consumption by hydrogen-oxidizing acetogens was 5% or less of the total hydrogen uptake by acetogens and methanogens. These results, in conjunction with previous studies, emphasize that acetate and hydrogen are the major methane precursors and that methanogens are the predominant hydrogen consumers in the sediments of this eutrophic lake.  相似文献   

12.
Summary A new method for the continuous on-line determination of methanol (range 0.2 to 10 gl–1) and ethanol (0.2 to 120 gl–1) is described. The rate limiting step is diffusion of the alcohol through the walls of a silicone tube immersed in the culture broth. A sintered SnO2 sensor was used instead of a Flame Ionization Detector for alcohol determination. Measurement is not affected by bioreactor aeration or agitation rates, dissolved oxygen, carbon dioxide, ammonia or the concentration of cells in the medium. The assay system was tested in extended batch cultivation of Methylomonas sp. with methanol as the sole carbon source (final biomass concentration, 35 gl–1). Sensor readings agreed well with simultaneous off-line gas chromatographic methanol determination.  相似文献   

13.
Two methane utilizing bacteria strains, GB 21 and WSB 874, were cultivated with methane as sole carbon and energy source in a submerged continuous fermentation process. The aim of the investigations was to reach high biomass concentrations (>25 g BDM ·kg?1 medium) and high productivities (>3 g BDM · kg?1 · h?1). A precondition for the high-performance fermentation process was to ensure a transfer rate of methane and oxygen in quantities required by the microorganisms. For this purposes a high performance stirred pressure fermenter was used. The fermentation process is characterized by the transfer of two gaseous substrates. In order to develop a technical process it was necessary to investigate both the correlations between the two gases and the productivity of the fermentation process and the influence of system pressure on the microorganisms. Within a pressure range of up to 0.7 MPa a biomass concentration of up to 50 g BDM · kg?1 medium and a productivity of up to 9 g BDM · kg?1 · h?1 was reached in a continuously running fermentation process under nonsterile conditions. Under these fermentation conditions the microbial population consisted of a dominating main culture GB 21 or WSB 874, respectively, and an accompanying flora (type II). The microbial population was very stable in its composition during the fermentation process running continuously for weeks and months.  相似文献   

14.
The activity of methanol dehydrogenase of Protaminobacter thiaminophagus ATCC 21371 and its 10 mutants which where able to overproduce amino acids from methanol was studied. It was found that the activity of methanol dehydrogenase depended on the used strain varied from 56.1 to 100.6 mU/mg d. w. of cells. Specific production of amino acids was between 4.3 × 10?7 and 13.0 × 10?7 μg/CFU. Statistical analysis confirmed expected high positive correlation (r = 0.93) between activity of methanol dehydrogenase and specific production of amino acids. Based on the measurement of methanol dehydrogenase activity a rapid method of estimation of amino acid production ability of Protaminobacter thiaminophagus mutants was developed.  相似文献   

15.
The methanol-utilizing yeast Hansenula polymorpha MH 26 is thermotolerant and grows at 40°C and pH 3.5 with a maximum specific growth rate of 0.23 h?1 on methanol. In continuous cultivation the maximum cell yield can be improved of 0.35 (methanol) to 0.44 g dry cells/g methanol (mixtures of methanol and stillage) through additional utilization of the essential growth and nutritive substances of stillage. The utilization of methanol and sucrose (molasses) at various mixtures is simultaneous possible. Investigations of these mixtures with 14C-marked methanol show an increasing incorporation of methanol of about 20–30% against methanol alone. This effect is caused by the increasing metabolization of sucrose to carbondioxide and additional energy delivery for better assimilation of methanol.  相似文献   

16.
Continuous decolorization of molasses waste water by mycelia of Coriolus versicolor Ps4a was studied using waste water from a baker’s yeast factory, treated by means of methane fermentation and with activated sludge. Optimum decolorization with bare pellet-type mycelia in shaking flasks needed the addition of glucose (0.5%) and peptone (0.05%) and aerobic conditions (1ppm of dissolved oxygen). Continuous decolorization in a bubbling column reactor showed a decolorization yield of approximately 75% in only 20 hr at a dilution rate (D) of 0.03 hr?1 under the optimum conditions.

In order to continue the decolorization for a longer time, mycelia immobilized within Caalginate gel were tested in a bubbling column reactor under the optimum conditions. The immobilized mycelia showed an almost constant decolorization yield (65.7%) during continuous decolorization for 16 days at D = 0.22 hr?1.  相似文献   

17.
Bivalve mollusks Bathymodiolus asoricus and Bathymodiolus puteoserpentis collected from the Rainbow and Logachev hydrothermal fields during dives of the Mir 1 and Mir 2 deep-sea manned submersibles were studied. Rates of methane oxidation and carbon dioxide assimilation in mussel gill tissue were determined by radiolabel analysis. During oxidation of 14CH4, radiocarbon was detected in significant quantities not only in carbon dioxide but also in dissolved organic matter, most notably 14C-formate and 14C-acetate, occurring in a 2 : 1 ratio. Activities of hexulose-phosphate synthase, phosphoribulokinase, and ribulose 1,5-bisphosphate carboxylase were shown in the soluble fraction of gill tissue cells. At the same time, no activity of hydroxypyruvate reductase—the key enzyme of the serine pathway of C1-assimilation—was detected. The results of PCR amplification using genetic probes for membrane-bound methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF) attest to the presence of the genes of these enzymes in the total DNA extracted from gill samples. However, no appropriate PCR responses were obtained with the mmoX primer system, which is a marker for soluble methane monooxygenase. All samples studied showed amplification with primers for the genera Methylobacter and Methylosphaera. At the same time, no genes specific to the genera Methylomonas, Methylococcus, Methylomicrobium, or MethylosinusandMethylocystis were detected. Electron microscopic examinations revealed the presence of two groups of endosymbiotic bacteria in the mussel gill tissue. The first group was represented by large cells possessing a complex system of cytoplasmic membranes, typical of methanotrophs of morphotype I. The other type of endosymbionts, having much smaller cells and lacking intracellular membrane structures, is likely to be constituted by sulfur bacteria.  相似文献   

18.
1. Experimental conditions have been found in which small amounts of methanol (approximately 2.5mm) accumulated when washed cell suspensions of methane-grown Pseudomonas methanica and Methanomonas methanooxidans were incubated with methane+oxygen mixtures in Warburg flasks. 2. The methanol formed could be separated completely from water by fractional distillation through glass helices followed by gas chromatography using 20% polyethylene glycol 400 on a Celite 545 support. 3. By using 18O-enriched oxygen gas the abundance of 18O in the methanol formed from oxidation of methane was measured with a Perkin–Elmer 270 combined gas chromatograph/mass spectrometer. The results showed that the oxygen in methanol was derived exclusively from gaseous oxygen in both micro-organisms. 4. Control experiments using [18O]water in incubation mixtures confirmed that there was negligible incorporation of the oxygen atom from water into methanol.  相似文献   

19.
The growth of Hansenula polymorpha and Kloeckera sp. 2201 with a mixture of glucose and methanol (38.8%/61.2%, w/w) and the regulation of the methanol dissimilating enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase were studied in chemostat culture, as a function of the dilution rate. Both organisms utilized and assimilated glucose and methanol simultaneously up to dilution rates of 0.30 h-1 (H. polymorpha) and 0.26h-1, respectively (Kloeckera sp. 2201) which significantly exceeded max found for the two yeasts with methanol as the only source of carbon. At higher dilution rates methanol utilisation ceased and only glucose was assimilated. Over the whole range of mixed-substrate growth both carbon sources were assimilated with the same efficiency as during growth with glucose or methanol alone.In cultures of H. polymorpha, however, the growth yield for glucose was lowered by the unmetabolized methanol at high dilution rates. During growth on both carbon sources the repression of the synthesis of all catabolic methanol enzymes which is normally caused by glucose was overcome by the inductive effect of the simultaneously fed methanol. In both organisms the synthesis of alcohol oxidase was found to be regulated differently as compared to catalase, formaldehyde and formate dehydrogenase. Whereas increasing repression of the synthesis of alcohol oxidase was found with increasing dilution rates as indicated by gradually decreasing specific activities of this enzyme in cell-free extracts, the specific activities of this enzyme in cell-free extracts, the specific activities of catalase and the dehydrogenases increased with increasing growth rates until repression started. The results indicate similar patterns of the regulation of the synthesis of methanol dissimilating enzymes in different methylotrophic yeasts.Abbreviations and Terms C1 Methanol - C6 glucose; D dilution rate (h-1) - D c critical dilution rate (h-1) - q s specific, rate of substrate consumption (g substrate [g cell dry weight]-1 h-1) - q CO2 and q O2 are the specific rates of carbon dioxide release and oxygen consumption (mmol [g cell dry weight]-1 h-1) - RQ respiration quotient (q CO2 q O2 1 ) - s 0(C1) and s 0(C6) are the concentrations of methanol and glucose in the inflowing medium (g l-1) - s residual substrate concentration in the culture liquid (g l-1) - Sp. A. enzyme specific activity - x cell dry weight concentration (gl-1) - Y X/C6 growth yield on glucose (g cell dry weight [g substrate]-1  相似文献   

20.
A method for the measurement of oxygen uptake and carbon dioxide production rates in mammalian cell cultures using membrane mass spectrometry is described. The small stirred reactor with a volume of 15 ml and integrated pH-control permits the economical application of isotopically labelled substrates and 13C-labelled bicarbonate buffer. Repetitive experiments showed the reproducibility of the method. In one case bicarbonate-free HEPES buffer was used and carbon dioxide production was measured using the intensity of the peak at m/z = 44(12CO2). In all other cases H13CO3 -buffer was applied and also12CO2 was measured. The minimum cell density required was only 2 × 104 cells ml−1. In the hybridoma T-flask cultivation studied here the measured specific oxygen uptake and carbon dioxide production rates were reasonably constant during the exponential growth phase and decreased significantly afterwards. Estimated respiratory quotients were always between0.90 and 0.92 except in HEPES-buffer, where a value of 0.67 was found. In the latter case specific oxygen uptake rate was higher than in bicarbonate buffered culture, however, carbon dioxide production rate was lower, and viable cell density was lowest. The addition of phenazine methosulfate, an artificial electron acceptor, increased both rates resulting in highest viable cell density but also highest lactate production rate. Glucose and glutamine pulse-feeding increased final cell density. The method described is directly applicable for samples from batch, fed-batch and continuous cultivations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号