首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the thermal stability of penicillin acylase from Streptomyces lavendulae in water-organic solvent monophasic systems at the range of temperatures between 40 and 60°C. We found a linear correlation between the log λP value of the solvent and the activation free energy for denaturation ( ΔG d ) at all temperatures tested. Thermodynamic analysis of the results indicates that solvents with log λP ≤-2.3 have protective effects, whereas solvents with log λP ≥-1.8 are deleterious for penicillin acylase.  相似文献   

2.
Hydrolytic activity of penicillin V acylase (EC 3.5.1.11) can be improved by using organic cosolvents in monophasic systems. However, the addition of these solvents may result in loss of stability of the enzyme. The thermal stability of penicillin V acylase from Streptomyces lavendulae in water-organic cosolvent monophasic systems depends on the nature of the organic solvent and its concentration in the media. The threshold solvent concentration (at which half enzymatic activity is displayed) is related to the denaturing capacity of the solvent. We found out linear correlations between the free energy of denaturation at 40 degrees C and the concentration of the solvent in the media. On one hand, those solvents with logP values lower than -1.8 have a protective effect that is enhanced when its concentration is increased in the medium. On the other hand, those solvents with logP values higher than -1.8 have a denaturing effect: the higher this value and concentration, the more deleterious. Deactivation constants of PVA at 40 degrees C can be predicted in any monophasic system containing a water-miscible solvent.  相似文献   

3.
At 28 °C, Streptomyces lavendulae produced high levels of penicillin V acylase (178 IU/l of culture) when grown on skim milk as the sole nutrient source for 275 h. The enzyme showed catabolite repression by glucose and was produced in the stationary phase of growth. Penicillin V was a good inducer of penicillin V acylase formation, while phenoxyacetic acid, the side-chain moiety of penicillin V, did not alter enzyme production significantly. The enzyme was stable between pH 6 and 11 and at temperatures from 20 °C to 55 °C. This extracellular enzyme was able to hydrolyse natural penicillins and unable to hydrolyse penicillin G. Received: 22 March 1999 / Received revision: 16 June 1999 / Accepted: 20 June 1999  相似文献   

4.
Carotenoids scavenge simple lipid-like alkylperoxyl radicals. However, the rate constant is too low to be determined directly and the mechanism is likewise not known with certainty [Mortensen, A. and Skibsted, L.H. (1998) FEBS Lett . 426 , 392-396]. It is demonstrated that carotenoids react with peroxyl radicals only slightly more reactive than lipidperoxyl radicals neither by electron transfer nor by hydrogen atom donation, but by adduct formation. Benzylperoxyl radicals are scavenged by the carotenoids &#103 -carotene and canthaxanthin with a second-order rate constant of at least 1 &#117 &#50 &#117 10 6 &#117 M &#109 1 &#117 s &#109 1 by formation of an adduct which decays in a first-order reaction.  相似文献   

5.
The effects of various organic solvents on penicillin acylase-catalyzed synthesis of β-lactam antibiotics (pivampicillin and ampicillin) have been investigated in water-solvent mixtures. The rates of penicillin acylase-catalyzed reactions were found to be significantly reduced by the presence of a small amount of organic solvent. In particular, the rate of enzyme catalysis was extremely low in the presence of ring-structured solvents and acids while enzyme activities were fully restored after removing the solvents. This indicates that interactions between the solvents and the enzyme are specific and reversible. To correlate the inhibitory effects of organic solvents with solvent properties the influence of solvent hydrophobicities and solvent activity on the rate of pivampicillin synthesis was examined. The reaction rate was found to decrease with increasing solvent hydrophobicities, and a better correlation was observed between the reaction rate and solvent activity. The effects of ionic strength on the synthesis of pivampicillin and ampicillin were also examined. The ionic strength dependence indicates that electrostatic interactions are involved in the binding of ionic compounds to the enzyme. On the basis of the active site structure of penicillin acylase, a possible mechanism for molecular interactions between the enzyme and organic solvents is suggested.  相似文献   

6.
Oxidized low density lipoprotein (LDL) plays an important role in atherogenesis. It is generally thought that LDL is mainly oxidized in the intima of vessel walls, surrounded by hydrophilic antioxidants and proteins such as albumin. The aim of this study was to investigate the possible interrelationships between oxidation resistance of LDL and its protein and lipid moieties. Proteins and to a lesser extent lipids, appeared to be the major determinants in the LDL Cu 2+ -oxidation resistance, which in turn depend on the ultracentrifugation (UC) procedure used. Comparing high speed/short time (HS/ST, 4 &#117 h), high speed/long time (HS/LT, 6-16 &#117 h) and low speed/long time (LS/LT, 24 &#117 h) conditions of UC, HS with the shortest time (4 &#117 h) led to prepare LDL (named LDL·HS-4 &#117 h) with higher total protein and triglyceride contents, unchanged total cholesterol, phospholipids and Vitamin E, and higher Cu 2+ -oxidation resistance. Among proteins, only albumin allows to explain changes. PAF acetyl hydrolase appeared to be unaffected, whereas its pro-oxidant role was established and found only in the absence of albumin. In contrast the pro-oxidant role of caeruloplasmin took place regardless of the albumin content of LDL. The antioxidant effect of albumin (the oxidation lag time was doubled for 20 &#117 mol/mol albumin per LDL) is assumed to be due to its capacity at decreasing LDL affinity for Cu 2+ . Interestingly, the LDL·HS-4 &#117 h albumin content mirrored the intrinsic characteristics of LDL in the plasma and was not affected by added free albumin. Moreover, it has been verified that in 121 healthy subjects albumin was the best resistance predictor of the Cu 2+ -oxidation of LDL·HS-4 &#117 h, with a multiple regression equation: lag time (min)=62.1+0.67(HSA/apoB)+0.02 (TG/apoB) &#109 0.01(TC/apoB); r =0.54, P <0.0001. Accounted for by lag time, the oxidation resistance did not correlate with &#102 -tocopherol and ubiquinol contents of LDL. The mean albumin content was about 10 &#117 mol/mol, and highly variable (0-58 &#117 mol/mol) with subjects. The LDL·HS-4 &#117 h may account for the status of LDL in its natural environment more adequately than LDL resulting from other conditions of UC.  相似文献   

7.
A bacterial strain producing a -lactam antibiotic acylase, able to hydrolyze ampicillin to 6-aminopenicillanic acid more efficiently than penicillin G, was isolated from soil and characterized. The isolate was identified as Achromobacter sp. using the phenotypic characteristics, composition of cellular fatty acids and 16S rRNA gene sequence. The enzyme synthesis was fully induced by phenylacetic acid (PAA) at a concentration of 2 g l–1. PAA at concentrations up to 12 g l–1 had no negative effect on the specific activity of acylase and biomass production, but slowed down the specific growth rate. Benzoic or 4-hydroxyphenylacetic acids can also induce synthesis of the enzyme. The inducers were metabolized in all cases. Acylase activity in cell-free extracts was determined with various substrates; ampicillin, cephalexin and amoxicillin were hydrolyzed 1.5- and 2-times faster than penicillin G. A high stability of acylase activity was observed over a wide range of pH (5.0–8.5) and at temperatures above 55°C.  相似文献   

8.
Several genes for the enzyme penicillin G acylase, as isolated from four different micro-organisms (Alcaligenes facaelis, Escherichia coli, Kluyvera cryocrescens or Providencia rettgeri) were modified at their carboxy-termini to include His-tag fusions, then were expressed from the plasmid pET-24a(+) in E. coli JM109(DE3) cells. All fusion proteins were next purified to homogeneity in a single step by agar-based Co-IDA chromatography, and were then evaluated as catalysts for the synthesis of cephalexin by a kinetically controlled strategy. We find here that the penicillin G acylase enzyme from K. cryocrescens shows a higher intrinsic synthesis/hydrolysis ratio, when compared to three other enzymes from A. facaelis or P. rettgeri, or E. coli.  相似文献   

9.
Some reactions of organic synthesis require to be performed in rather aggressive media, like organic solvents, that frequently impair enzyme operational stability to a considerable extent. We have studied the option of developing a reactivation strategy to increase biocatalyst lifespan under such conditions, under the hypothesis that organic solvent enzyme inactivation is a reversible process. Glyoxyl agarose immobilized penicillin G acylase and cross‐linked enzyme aggregates of the enzyme were considered as biocatalysts performing in dioxane medium. Reactivation strategy consisted in re‐incubation in aqueous medium of the partly inactivated biocatalysts in organic medium, best conditions of reactivation being studied with respect to dioxane concentration and level of enzyme inactivation attained prior to reactivation. Best results were obtained with glyoxyl agarose immobilized penicillin G acylase at all levels of residual activity studied, with reactivations up to 50%; for the case of a biocatalyst inactivated down to 75% of its initial activity, full recovery of enzyme activity was obtained after reactivation. The potential of this strategy was evaluated in the thermodynamically controlled synthesis of deacetoxycephalosporin G in a sequential batch reactor operation, where a 20% increase in the cumulative productivity was obtained by including an intermediate stage of reactivation after 50% inactivation. Biotechnol. Bioeng. 2009;103: 472–479. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log P(OW) of the solvent, where P(OW) is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of delta acrAB and/or delta tolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log P(OW) = 5.5). The delta tolC mutant was more sensitive to nonane than the delta acrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log P(OW) higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The delta tolC mutant accumulated n-nonane or decane (log P(OW) = 6. 0) more abundantly than the parent or the delta acrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log P(OW) in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane.  相似文献   

11.
A new bacterial strain, identified as Pseudomonas rhodesiae PF1 and deposited under the accession number CIP 107491, is presented. It is very active for the production of the acyclic compound Z-2-methyl-5-isopropyl-hexa-2,5-dien-1-al (isonovalal) from &#102 -pinene oxide. Enzyme synthesis is induced by culturing cells on &#102 -pinene; growing bacteria also have the ability to synthesize the epoxide derivative of &#102 -pinene. Isonovalal production was performed without aeration and with concentrated resting cells previously frozen at &#109 20°C, and subsequently thawed in a water-organic solvent, two-phase system. The organic layer was hexadecane, the volume ratio being 1:1. The best results achieved allowed recovery of c.a. 60 g/l organic solvent of isonovalal in 2.5 h operation, which is the most efficient process to date in the area of terpene biotransformations.  相似文献   

12.
We describe novel tetrose isomerizations and C-2 epimerizations by the industrially important d -xylose ketol-isomerase (E.C.5.3.1.5) with both the d - and l -forms of the sugars. We further show that in addition to isomerization to d -fructose, d -glucose is slowly C-2 epimerized to d -mannose. The formation rate of the C-2 epimer was 0.03 mg mg &#109 1 min &#109 1 from d -glucose, 0.56 mg mg &#109 1 min &#109 1 from d -arabinose and 3.0 mg mg &#109 1 min &#109 1 from d -erythrose. The equilibria of the reaction products as a function of temperature were measured for threose/erythrulose/erythrose, arabinose/ribulose/ ribose and glucose/fructose/mannose.  相似文献   

13.
A simple method was developed to release periplasmic penicillin G acylase from Escherichia coli BL21(DE3) during the fermentation process. More than 80% of the total penicillin G acylase was released into the broth when 3% (v/v) chloroform was added at 3 h after induction. The activity of extracellular penicillin G acylase reached 20699 U/l. This method was efficient and would facilitate further investigation of penicillin G acylase for industrial applications.  相似文献   

14.
Summary Beijerinckia indica var.penicillanicum mutant UREMS-5, producing 168% more penicillin V acylase, was obtained by successive treatment with UV, -irradiation and ethylmethane sulfonate. Penicillin V acylase production by the mutant strain was resistant to catabolite repression by glucose. Incorporation of glucose, sodium glutamate and vegetable oils in the medium enhanced enzyme production. The maximum specific production of penicillin V acylase was 244 IU/g dry weight of cells. Effect of solvents on hydrolysis of penicillin V by soluble penicillin V acylase and whole cells was studied. Methylene chloride, chloroform and carbon tetrachloride significantly stimulated the rate of penicillin V hydrolysis by whole cells.  相似文献   

15.
The activity of penicillin acylase has been studied in aqueous and organic solvents, as free enzyme as well as immobilized within the membrane of liquid-core capsules. The activity of the enzyme is inhibited by the accumulation of the products of the hydrolysis reaction, namely phenyl acetic acid (PAA). In order to overcome this inhibition a range of organic solvents were tested for use in in situ product recovery. Of these solvents dibutyl sebacate (DBS) was chosen due to the rapid extraction rate, the high logP and to facilitate capsule production. The extraction efficiency at pH 3.5 for PAA was >80% for phase ratios of >50% free solvent with partition coefficients of 8 and 0.7 for PAA and penicillin G (PenG), respectively, thereby showing that PAA could be selectively extracted at pH 3.5 and 25 degrees C. Liquid-core capsules containing DBS were shown to efficiently remove PAA selectively and the PAA could be effectively back-extracted and the capsules re-used in a three-stage process resulting in high product separation. Immobilization of penicillin acylase onto the capsule membranes resulted in increased operational stability of the enzyme and a very high enzyme activity. Over 53.3% of the PAA formed could be recovered in the capsule core with a concentration over sevenfold higher than in the aqueous phase. Higher extraction efficiencies could be obtained by varying the substrate concentration and number of capsules. The enzyme immobilized on capsules could be stored for over 4 months at pH 8 and 4 degrees C with no loss of activity. Over 80% of the initial activity could be recovered over five repeated batch cycles of the bioconversion process. The importance of capsular perstraction and reactive capsular perstraction has been clearly demonstrated.  相似文献   

16.
Lipase catalyzed esterification of glycidol in organic solvents   总被引:1,自引:0,他引:1  
We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
We have used a simple and efficient approach by combining the known functional and structural properties of penicillin G acylase (PGA) from E. coli, and tried to mutate PGA of Bacillus megaterium with the goal of increasing the stability of the enzyme in organic solvents or at acidic pH. The PGA mutants Kβ427A, Kβ430A and Kβ427A/Kβ430A obtained have higher stability in DMF than the wild-type PGA.  相似文献   

18.
The hydrolysis of penicillin G in the presence of an organic solvent, used with the purpose of extracting it from the culture medium, may greatly simplify the industrial preparation of 6-APA. However, under these conditions, PGA immobilized onto Eupergit displays very low stability (half-life of 5 h in butanone-saturated water) and a significant degree of inhibition by the organic solvent (30%). The negative effect of the organic solvent strongly depended on the type of solvent utilized: water saturated with butanone (around 28% v/v) had a much more pronounced negative effect than that of methylisobutyl ketone (MIBK) (solubility in water was only 2%). These problems were sorted out by using a new penicillin G acylase derivative designed to work in the presence of organic solvents (with each enzyme molecule surrounded by an hydrophilic artificial environment) and a suitable organic solvent (MIBK). Using such solvent, this derivative kept its activity unaltered for 1 week at 32 degrees C. Moreover, the enzyme activity was hardly inhibited by the presence of the organic solvent. In this way, the new enzyme derivative thus prepared enables simplification of the industrial hydrolysis of penicillin G.  相似文献   

19.
Erwinia aroideae (DSMZ 30186) is a potential microbial culture to produce intracellular penicillin V acylase (PVA). The whole cell PVA activity was improved by permeabilization with various organic solvents. The cell-bound PVA activity showed an eightfold increase upon treatment with chloroform (5 μL/mgdry biomass) for 10 min and diethyl ether (10 μL/mgdry biomass) for 45 min. Hexane, toluene, ethyl acetate and dichloromethane enhanced the enzyme activity up to two-, six-, four- and two-fold, respectively; whereas, PVA activity declined drastically on permeabilization with acetone, pyridine and alcohols. The physicochemical properties of the organic solvents used for permeabilization were correlated with the change in activity. It was found that solvents with high hydrophobicity (log P > 0.68) and lower dielectric constant (<9) were relatively effective in increasing PVA activity. These results allow systematic selection of suitable solvent for best performance.  相似文献   

20.
Aims:  Solvent-tolerant bacteria have emerged as a new class of micro-organisms able to grow at high concentrations of toxic solvents. Such bacteria and their solvent-stable enzymes are perceived to be useful for biotransformations in nonaqueous media. In the present study, the solvent-responsive features of a lipase–producing, solvent-tolerant strain Pseudomonas aeruginosa PseA have been investigated to understand the cellular mechanisms followed under solvent-rich conditions.
Methods and Results:  The solvents, cyclohexane and tetradecane with differing log P -values (3·2 and 7·6 respectively), have been used as model systems. Effect of solvents on (i) the cell morphology and structure (ii) surface hydrophobicity and (iii) permeability of cell membrane have been examined using transmission electron microscopy, atomic force microscopy and other biochemical techniques. The results show that (i) less hydrophobic (low log P -value) solvent cyclohexane alters the cell membrane integrity and (ii) cells adapt to organic solvents by changing morphology, size, permeability and surface hydrophobicity. However, no such changes were observed in the cells grown in tetradecane.
Conclusions:  It may be concluded that P. aeruginosa PseA responds differently to solvents of different hydrophobicities. Bacterial cell membrane is more permeable to less hydrophobic solvents that eventually accumulate in the cytoplasm, while highly hydrophobic solvents have lesser tendency to access the membrane.
Significance and Impact of the Study:  To the best of our knowledge, these are first time observations that show that way of bacterial solvent adaptability depends on nature of solvent. Difference in cellular responses towards solvents of varying log P -values (hydrophobicity) might prove useful to search for a suitable solvent for carrying out whole-cell biocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号