首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In situ hybridization of Drosophila melanogaster somatic chromosomes has been used to demonstrate the near exact correspondence between the location of highly repetitious DNA and classically defined constitutive heterochromatin. The Y chromosome, in particular, is heavily labeled even by cRNA transcribed from female (XX) DNA templates (i.e., DNA from female Drosophila with 2 Xs and 2 sets of autosomes). This observation confirms earlier reports that the Y chromosome contains repeated DNA sequences that are shared by other chromosomes. In grain counting experiments the Y chromosome shows significantly heavier label than any other chromosome when hybridized with cRNA from XY DNA templates (i.e., DNA from male Drosophila with 1 X and 1 Y plus 2 sets of autosomes). However, the preferential labeling of the Y is abolished if the cRNA is derived from XX DNA. We interpret these results as indicating the presence of a class of Y chromosome specific repeated DNA in D. melanogaster. The relative inefficiency of the X chromosome in binding cRNA from XY and XYY DNA templates, coupled with its ability to bind XX derived cRNA, may also indicate the presence of an X chromosome specific repeated DNA.  相似文献   

3.
《Journal of bryology》2013,35(3):422-426
Abstract

1. In six species of hepatics belonging to the Marchantiales and Acrogynae the large heteropycnotic chromosome found in addition to the sex chromosome or microchromosome is the nucleolar chromosome.

2. The sex chromosomes and microchromosomes in these species, and in four of the five species of which the nucleolar chromosomes have been described by other authors, are not nucleolar chromosomes. Riccardia pinguis (L.) Gray appears to stand alone in having a nucleolar orpnizer on the sex chromosome in addition to that on an autosome bearing a heteropycnotic trabant.

3. The large heteropycnotic sex chromosomes of certain species of Frullania belonging to the subgenus Galeiloba Steph. are not apparently homologous with the large heteropycnotic chromosome of Frullania africana Steph., belonging to the subgenus Chonanthelia Spr. This is not in accordance with the suggestion of Tatuno (1941) that all ' H-chromosomes' are phylogenetically homologous.

4. It is argued that the nucleolar chromosomes throughout the hepatics, with the exception of the sex chromosome of Riccardia pinguis, may be phylogenetically homologous.  相似文献   

4.
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization.  相似文献   

5.
V. Baimai 《Chromosoma》1969,27(4):381-394
Drosophila birchii, a member of the melanogaster species group of the subgenus Sophophora, is common in the tropical rain forests of the Australia-New Guinea areas. Chromosome squashes are easily prepared from the larval ganglion cells and the sex chromosomes are readily recognizable. The species exhibits a remarkable karyotype variation. The metaphase plate figures, in general, show two pairs of V's, one pair of dots and one pair of sex chromosomes. Variations in metaphase chromosome morphology are found in the X (with four types), the Y (with three types) and chromosome IV (with two types). Chromosomal interchanges between X- and Y-chromosomes Type I are postulated to be involved in the differentiation of sex chromosome morphology while the modification of chromosome IV seems likely to be a result of the acquisition of extra heterochromatin. These chromosome types form seven distinct metaphase plate figures, all encountered in wild populations, thus giving D. birchii the most variable karyotype in the genus Drosophila.  相似文献   

6.
The nucleolus constitutes a cytologically visible phenotype for ribosomal DNA (rDNA). Nucleolar size, as determined by silver staining, is a good indicator of cell proliferation rate and biosynthetic activity. Nevertheless, the relationship between rDNA content and sexual dimorphism for nucleolar size is not well documented. In the present study, the impact of sex and ploidy level on nucleolar size is investigated in three haplo/diploid and three diplo/diploid species of insect. Nucleolar sizes are found to be proportional to ploidy level in the haplo/diploid hymenopterans Trypoxylon albitarse and Nasonia vitripennis. Conversely, in the ant Messor barbarus, nucleolar sizes are larger in haploid males (winged) than diploid females (apterous). Among the diplo/diploid species, evidence for gene dosage compensation on nucleolar activity is suggested by the absence of sex differences in Drosophila simulans, a species in which rDNA is limited to the X chromosome. By contrast, in the grasshopper Stenobothrus festivus, another species with rRNA genes restricted to the X chromosome, the size of the nucleolus is significantly larger in females than in males. Additionally, in the grasshopper Chorthippus parallelus, where rDNA is distributed evenly on several autosomes of males and females, the females also show larger nucleoli than males. In both grasshopper species, the magnitude of the female/male ratio for nucleolus area is very similar to the body size ratio, suggesting that body size, as well as sex, ploidy, gene dosage and physiological activity, may be an important determinant of nucleolus area.  相似文献   

7.
The locations of the ribosomal DNA (rDNA) insertion elements type I and type II along the polytene chromosomes of three Drosophila species of the melanogaster subgroup-D. simulans, D. mauritiana and D. melanogaster-have been compared. In situ hybridization has shown that the intragenomic distribution of type I as well as of type II insertions is different for these related species. In particular, we have revealed rDNA-free autosomal sites, containing type II element sequences within the D. simulans and D. mauritiana chromosomes. This finding confirms the ability of this type of insertion to transpose, as was demonstrated earlier for Bombyx mori. The appearance of the rDNA not associated with the nucleolar organizers, evident by additional nucleoli, occurred with species-specific frequency. At the same time, for all three species the pattern of such changes (an attachment of the nucleoti to varying sites of the chromosomes and the presence of ectopic contacts between them, a composition of the rDNA repeats in the nucleolar material not integrated at the nucleolar organizer) was similar. The number of additional nucleoti in the hybrid polytene nuclei corresponded to the value of the parental species exhibiting nucleolar replicative dominance.  相似文献   

8.
Karyotype analyses were conducted onCunninghamia konishii, Cunninghamia lanceolata, andTaiwania cryptomerioides, all members ofTaxodiaceae. The somatic chromosome number was found to be 2n = 2x = 22 in all species which concurrs with previous reports. The karyotypes are generally asymmetrical with the smaller chromosomes being more submedian than the larger ones. Chromosomes with unusual or specific structures, thought to be associated with the nucleolar organizing region, were found in each species.Cunninghamia species have a marker chromosome pair with an unusually long secondary constriction.Taiwania has an unusually long kinetochore region present in a submedian chromosome pair.  相似文献   

9.
It is shown by isopycnic density gradient centrifugation that the DNAs of the sibling species Drosophila hydei, Drosophila neohydei and Drosophila pseudoneohydei differ regarding the numbers and proportions of satellite DNA bands. An overwhelming proportion of all repetitive nucleotide sequences of the DNA is contained in these satellite fractions. The majority of the satellites are species specific despite the close phylogenetic and cytological relationship between the three species studied. — By in situ hybridization experiments it is demonstrated that the various satellite sequences occupy different positions within the chromosomes. All types of localization patterns, from a wide spread occurrence in all chromosomes to an apparent restriction to kinetochore regions of single chromosomes, have been observed. Main band DNA, on the other hand, in its hybridization behavior reflects the DNA distribution according to the banding pattern in giant chromosomes. Generally satellite sequences seem to be included in -heterochromatic chromosome regions but no relation to the heterochromatin of the Y-chromosome was found. — Renaturation studies support various evidence that satellite sequences occur in tandemly repetitious units. At least some of this repetitious material seems to be linked to non-satellite DNA sequences or to DNA of other satellites.  相似文献   

10.
The conjunctive mechanism of the XY bivalent is believed to differ from that of the autosomal bivalents in the achiasmate Drosophila melanogaster male. It has been proposed that hypothetical cohesive elements, termed collochores, hold the X and Y chromosomes together at or near their nucleolar organizing regions (NORs) and that collochores are not exhibited by autosomal bivalents. In electron micrographs, unique fibrillar material is observed between the X and Y chromosomes at the synaptic site. Recently, the 240 bp nontranscribed spacer associated with rRNA genes at the NOR has been implicated as the essential DNA sequence for XY pairing. To test whether this DNA sequence is always associated with XY pairing and to determine its relationship to the unique fibrillar material, we studied the XY bivalent in Drosophila simulans. The D. simulans Y chromosome has few, if any, rRNA genes, but does have a large block (3,000 kb or 12,500 copies) of the nontranscribed spacer repeat located at the distal end of its long arm. This is in contrast to the D. melanogaster Y, which has the repeat located among rRNA genes on its short arm. Using light and electron microscopy, we show that the X does indeed pair with the distal end of the long arm of the D. simulans Y. However, no fibrillar material is evident in serial thin sections of the D. simulans XY bivalent, suggesting that this material (in D. melanogaster) may be remnants of the NOR rather than a morphological manifestation of the hypothetical collochores. Indeed, in electron micrographs, the synaptic regions of the XY and autosomal bivalents appear similar with no obvious pairing structures, suggesting that the conjunctive mechanism holding homologous chromosomes together is the same for the XY and autosomal bivalents.  相似文献   

11.
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females.  相似文献   

12.
The pairing of polytene chromosomes was investigated in Drosophila melanogaster, Drosophila simulans and their hybrids as well as in species of the D. virilis group and in F1 hybrids between the species of this group. The study of frequency and extent of asynapsis revealed non-random distribution along chromosome arms both in interspecific hybrids and pure Drosophila species. It is suggested that definite chromosome regions exhibiting high pairing frequency serve as initiation sites of synapsis in salivary gland chromosomes.  相似文献   

13.
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.  相似文献   

14.
Lohe AR  Roberts PA 《Genetica》2000,109(1-2):125-130
The Drosophila melanogasterspecies subgroup is a closely-knit collection of eight sibling species whose relationships are well defined. These species are too close for most evolutionary studies of euchromatic genes but are ideal to investigate the major changes that occur to DNA in heterochromatin over short periods during evolution. For example, it is not known whether the locations of genes in heterochromatin are conserved over this time. The 18S and 28S ribosomal RNA genes can be considered as genuine heterochromatic genes. In D. melanogasterthe rRNA genes are located at two sites, one each on the X and Y chromosome. In the other seven sibling species, rRNA genes are also located on the sex chromosomes but the positions often vary significantly, particularly on the Y. Furthermore, rDNA has been lost from the Y chromosome of both D. simulansand D. sechellia, presumably after separation of the line leading to present-day D. mauritiana.We conclude that changes to chromosomal position and copy number of rDNA arrays occur over much shorter evolutionary timespans than previously thought. In these respects the rDNA behaves more like the tandemly repeated satellite DNAs than euchromatic genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
R. E. Casu 《Genetica》1990,81(3):157-169
Two species of the Drosophila nasuta subgroup of the Drosophila immigrans group, D. sulphurigaster albostrigata and D. nasuta albomicans were investigated in this study. Collections of both species were made from Phuket, Thailand. Both species have similar salivary chromosomes, with four autosomal arms and one sex chromosome arm, and both are highly polymorphic for paracentric inversions. D. s. albostrigata accounted for the majority of the isolines collected and exhibited the greater number of inversions. One inversion, C1, was common to both species, indicating common ancestry.A non-random distribution of inversions was observed on the proximal end of chromosome II in both D. s. albostrigata and D. n. albomicans. An inter-collection comparison revealed that both rigid and flexible chromosomal polymorphism were operating in the two species, with a seasonal variation noted for one inversion in D. s. albostrigata. A non-random association of two inversions was observed in D. n. albomicans.Based on a comparison of the indices of crossing over, both D. s. albostrigata and D. n. albomicans were found to be more heterozygous than in previous studies, with D. n. albomicans appearing to have evolved further than D. s. albostrigata.Based on a thesis submitted for the degree of Ph. D. at the University of Queensland.  相似文献   

16.
A considerable increase in the number of nucleoli non-associted with the nucleolar organizer (NO) was shown in the salivary gland cells of Drosophila melanogaster mutants, heterozygous for a deficiency of NO. The frequency of formation of additional nucleoli increased with the raising of the chromosome polyteny level. By means of in situ hybridization we showed that in the mutant and the wildtype polytene cells the ribosomal DNA (rDNA) of these unlawful nucleoli included ribosomal gene repeats (18S+28S) with two types of insertions: ivs-I and ivs-II Such additional nucleoli can be attached to varying sites of the polytene chromosomes containing type I insertion sequences.  相似文献   

17.
Cloned DNA fragments of Drosophila miranda which label all chromosome ends show a basic tandem repeat unit of 4.4 kb. The D. miranda telomere specific tandem repeats do not cross-hybridize with genomic D. melanogaster DNA which itself contains telomere repeat units of 3 kb. For a more detailed analysis of the functional criteria of telomere specific sequences we determined the repetition frequency of the tandem repeat units. As a low estimate we found a repetition frequency of 20 for female D. miranda DNA. This is on average equivalent to 2 telomere repeat units per chromosome end in the female D. miranda karyotype. However, a variable number of tandem repeat units per chromosome end would describe more closely the obtained differences in the labeling intensity between the individual chromosomes (X1L-5). For the D. miranda male DNA we determined a repetition frequency of 90. The frequency difference of 70 copies between male and female DNA must be due to the Y-chromosome.  相似文献   

18.
A cluster of genes corresponding to the early ecdysone stimulated puff 2B of the Drosophila melanogaster X chromosome has been localized using in situ hybridization in eight Drosophila species. Genes ecs, dor and swi from this cluster have been mapped in D. funebris, D. virilis, D. hydei, D. repleta, D. mercatorum and D. paranaensis to the telomeric region of the X chromosome, in D. kanekoi to the distal region, and in D. pseudoobscura, to the proximal region of the X chromosome. It is assumed that organization of this cluster in these species is conserved. In D. hydei, multiple hybridization sites of certain DNA probes from this region were found.  相似文献   

19.
20.
E. Zouros 《Genetics》1981,97(3-4):703-718
The chromosomal determination of interspecific differences in mating behavior was studied in the interfertile pair, Drosophila arizonensis and Drosophila mojavensis, by means of chromosomal substitutions. Interspecific crossing over was avoided by crossing hybrid males to parental females, and identification of the origin of each chromosome in backcrossed hybrids was possible by means of allozyme markers. It was found that male mating behavior is controlled by factors located in the PGM-marked chromosome (which, in other Drosophila species, is part of the X chromosome) and in the Y chromosome. The other chromosomes influence male sexual behavior through their interactions with each other and with the PGM-marked chromosome, but their overall effect is minor. Female mating behavior is controlled by factors located in the ODH-marked and AMY-marked chromosomes, with the other chromosomes exercising a small additive effect. Hence, the two sex-specific behaviors are under different genetic control. Cytoplasmic origin has no effect on the mating behavior of either sex. There appears to be no correlation between a chromosome's structural diversity (i.e., amounts of inversion polymorphism within a species or numbers of fixed inversions across species) and its contribution to sexual isolation. These findings are in general agreement with those from similar Drosophila studies and may not be specific to the species studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号