首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This review focuses, in a non-exhaustive manner, on the essential structural and conformational features of protein-carbohydrate interactions and on some applications of NMR spectroscopy to deal with this topic from different levels of complexity.  相似文献   

2.
The interaction of a synthetically prepared mutant peptide of hevein (a well known chitin-binding lectin) Hev32S19D with chitin oligosaccharides (and chitosan analogues) has allowed us to estimate their affinity constants and associated thermodynamic data. The mutant peptide is able to bind chitin oligomers, but with significant decreases in the association constants with chito-oligosaccharides. The determination of the three-dimensional structure of the peptide mutant, by using NMR, has permitted us to deduce that the topology of the backbone is very similar to that of the parent Hev32 peptide. The same is true regarding the orientations of the key aromatic residues Trp21, Trp23, and Tyr30. The decrease in the association constants can be attributed to the different topological orientation of key side chains and to the importance of protein-sugar intermolecular essential hydrogen bonds and CH-π stacking interactions. The analysis has permitted us to infer the free energy of binding associated with these interactions as well as to estimate the corresponding binding enthalpy.  相似文献   

3.
The conformational properties of the homo oligomers of increasing chain length Boc-(Asn)(n)-NHMe (n = 2, 4, 5), (GlcNAc-beta-Asn)(n)-NHMe (n = 2, 4, 5, 8) and Boc-[GlcNAc(Ac)(3)-beta-Asn](n)-NHMe (n = 2, 4, 5) were studied by using NOE experiments and molecular dynamic calculations (MD). Sequential NOEs and medium range NOEs, including (i,i+2) interactions, were detected by ROESY experiments and quantified. The calculated inter-proton distances are longer than those characteristic of beta-turn secondary structures. Owing to the large conformational motions expected for linear peptides, MD simulations were performed without NMR constraints, with explicit water and by applying different treatments of the electrostatic interactions. In agreement with the NOE results, the simulations showed, for all peptides, the presence of both folded and unfolded structures. The existence of significant populations of beta-turn structures can be excluded for all the examined compounds, but two families of structures were more often recognized. The first one with sinusoidal or S-shaped forms, and another family of large turns together with some more extended conformations. Only the glycosylated pentapeptide shows in vacuo a large amount of structures with helical shaped form. The results achieved in water and in DMSO are compared and discussed, together with the effect of the glycosylation.  相似文献   

4.
Summary The nonapeptide Leuprorelin, one of the LHRH agonists, was studied by means of 2D nuclear magnetic resonance spectroscopy and molecular modeling. NOESY spectra in aqueous/deuterated methanol solution (50% H2O/CD3OD) at low temperature (268 K) revealed short-range nOe connectivities (i, i+1), characteristic of flexibility of the molecule. The H N -H N sequential connectivities observed provide evidence that the sequence has the propensity to form a bend involving residues 5 and 6 and the N-terminal segment. The α-proton chemical shifts compared to random coil and additional data from the amide proton temperature coefficients support this assumption. One long-range nOe cross peak between H 2 α -H NEth is indicative of proximity between C- and N-termini.  相似文献   

5.
The nonapeptide Leuprorelin, one of the LHRH agonists, was studied by means of 2D nuclear magnetic resonance spectroscopy and molecular modeling. NOESY spectra in aqueous/deuterated methanol solution (50%H2O/CD3OD) at low temperature (268 K) revealed short-range nOe connectivities (i, i+1), characteristic of flexibility of the molecule. The HN–HN sequential connectivities observed provide evidence that the sequence has the propensity to form a bend involving residues 5 and 6 and the N-terminal segment. The -proton chemical shifts compared to random coil and additional data from the amide proton temperature coefficients support this assumption. One long-range nOe cross peak between H2 –HNEth is indicative of proximity between C- and N-termini.  相似文献   

6.
Lung surfactant protein D (SP-D) can directly interact with carbohydrate residues on pulmonary pathogens and allergens, stimulate immune cells, and manipulate cytokine and chemokine profiles during the immune response in the lungs. Therapeutic administration of rfhSP-D, a recombinant homotrimeric fragment of human SP-D comprising the alpha-helical coiled-coil neck plus three CRDs, protects mice against lung allergy and infection caused by the fungal pathogen Aspergillus fumigatus. The high resolution crystal structures of maltose-bound rfhSP-D to 1.4A, and of rfhSP-D to 1.6A, define the fine detail of the mode and nature of carbohydrate recognition and provide insights into how a small fragment of human SP-D can bind to allergens/antigens or whole pathogens, and at the same time recruit and engage effector cells and molecules of humoral immunity. A previously unreported calcium ion, located on the trimeric axis in a pore at the bottom of the funnel formed by the three CRDs and close to the neck-CRD interface, is coordinated by a triad of glutamate residues which are, to some extent, neutralised by their interactions with a triad of exposed lysine residues in the funnel. The spatial relationship between the neck and the CRDs is maintained internally by these lysine residues, and externally by a glutamine, which forms a pair of hydrogen-bonds within an external cleft at each neck-CRD interface. Structural links between the central pore and the cleft suggest a possible effector mechanism for immune cell surface receptor binding in the presence of bound, extended natural lipopolysaccharide and phospholipid ligands. The structural requirements for such an effector mechanism, involving both the trimeric framework for multivalent ligand binding and recognition sites formed from more than one subunit, are present in both native hSP-D and rfhSP-D, providing a possible explanation for the significant biological activity of rfhSP-D.  相似文献   

7.
A new procedure for the graphic analysis of molecular dynamics (MD) simulations on proteins is introduced, in which comprehensive visualization of results and pattern recognition is greatly facilitated. The method involves determining the conformational and helicoidal parameters for each structure entering the analysis via the method "Curves," developed for proteins by Sklenar, Etchebest, and Lavery (Proteins: Structure, Function Genet. 6:46-60, 1989) followed by a novel computer graphic display of the results. The graphic display is organized systematically using conformation wheels ("dials") for each torsional parameter and "windows" on the range values assumed by the linear and angular helicoidal parameters, and is present in a form isomorphous with the primary structure per se. The complete time evolution of dynamic structure can then be depicted in a set of four composite figures. Dynamic aspects of secondary and tertiary structure are also provided. The procedure is illustrated with an analysis of a 50 psec in vacuo simulation on the 58 residue protein, bovine pancreatic trypsin inhibitor (BPTI), in the vicinity of the local minimum on the energy surface corresponding to a high resolution crystal structure. The time evolution of 272 conformational and 788 helicoidal parameters for BPTI is analyzed. A number of interesting features can be discerned in the analysis, including the dynamic range of conformational and helicoidal motions, the dynamic extent of 2 degrees structure motifs, and the calculated fluctuations in the helix axis. This approach is expected to be useful for a critical analysis of the effects of various assumptions about force field parameters, truncation of potentials, solvation, and electrostatic effects, and can thus contribute to the development of more reliable simulation protocols for proteins. Extensions of the analysis to present differential changes in conformational and helicoidal parameters is expected to be valuable in MD studies of protein complexes with substrates, inhibitors, and effectors and in determining the nature of structural changes in protein-protein interactions.  相似文献   

8.
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin’s exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate–aromatic interactions including CH–π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.  相似文献   

9.
Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus-host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design.  相似文献   

10.
The conformations of two synthetic trisaccharides of blood group A and B (alpha-L-Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-alpha-D-Galp and alpha-L-Fucp-(1-->2)-[alpha-D-Galp-(1-->3)]-alpha-D-Galp, respectively) and of a type A tetrasaccharide alditol, Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-beta-D-Galp-(1-->3)-GalNAc-ol, were studied by NMR measurements of one-bond C-H residual dipolar couplings in partially oriented liquid crystal solutions. The conformations of the three oligosaccharides were analyzed by generating thousands of structures using a Monte-Carlo method. Two different strategies were applied to calculate theoretical dipolar couplings for these structures. In the first method, the orientation of the molecule was calculated from the optimal fit of the molecular model to the experimental data, while in the second method the orientation tensor was calculated directly from the moment of inertia of the molecular model. Both methods of analysis give similar results but with slightly better agreement with experiment for the former one. The analysis of the results implies a single unique conformation for both blood group epitopes in solution in disagreement with theoretical models suggesting the existence of two conformers in solution.  相似文献   

11.
The conformations of the histo-blood group carbohydrate antigens Lewis X (Le(x)) and Lewis A (Le(a)) were studied by NMR measurements of one-bond C-H residual dipolar couplings in partially oriented liquid crystal solutions. A strategy for rapid calculation of the difference between theoretical and experimental dipolar couplings of a large number of model structures generated by computer simulations was developed, resulting in an accurate model structure for the compounds. Monte Carlo simulations were used to generate models for the trisaccharides, and orientations of each model were sought that could reproduce the experimental residual dipolar coupling values. For both, Le(a) and Le(x), single low energy models giving excellent agreement with experiment were found, implying a compact rigidly folded conformation for both trisaccharides. The new approach was also applied to the pentasaccharides lacto-N-fucopentaose 2 (LNF-2) and lacto-N-fucopentaose 3 (LNF-3) proving its consistency and robustness. For describing the conformation of tightly folded oligosaccharides, a definition for characterization of ring planes in pyranoside chairs is proposed and applied to the analysis of the relation between the fucose and galactose residues in the epitopes, revealing the structural similarity between them.  相似文献   

12.
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1H,-15N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of .5 × 10?5–7.0 × 10?5 M.  相似文献   

13.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   

14.
The NMR solution structure of bovine pancreatic trypsin inhibitor (BPTI) obtained by distance geometry calculations with the program DIANA is compared with groups of conformers generated by molecular dynamics (MD) simulations in explicit water at ambient temperature and pressure. The MD simulations started from a single conformer and were free or restrained either by the experimental NOE distance restraints or by time-averaged restraints; the groups of conformers were collected either in 10 ps intervals during 200 ps periods of simulation, or in 50 ps intervals during a 1 ns period of simulation. Overall, these comparisons show that the standard protein structure determination protocol with the program DIANA provides a picture of the protein structure that is in agreement with MD simulations using “realistic” potential functions over a nanosecond timescale. For well-constrained molecular regions there is a trend in the free MD simulation of duration 1 ns that the sampling of the conformation space is slightly increased relative to the DIANA calculations. In contrast, for surface-exposed side-chains that are less extensively constrained by the NMR data, the DIANA conformers tend to sample larger regions of conformational space than conformers selected from any of the MD trajectories. Additional insights into the behavior of surface side-chains come from comparison of the MD runs of 200 ps or 1 ns duration. In this time range the sampling of conformation space by the protein surface depends strongly on the length of the simulation, which indicates that significant side-chain transitions occur on the nanosecond timescale and that much longer simulations will be needed to obtain statistically significant data on side-chain dynamics.  相似文献   

15.
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered.  相似文献   

16.
Conformational energy calculations provide an understanding as to how interatomic interactions lead to the three-dimensional structures of polypeptides and proteins, and how these molecules interact with other molecules. Illustrative results of such calculations pertain to model systems (-helices and -sheets, and interactions between them), to various open-chain and cyclic peptides, to fibrous proteins, to globular proteins, and to enzyme-substrate complexes. In most cases, the validity of the computations is established by experimental tests of the predicted structures.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985. This paper first appeared in the Israel Journal of Chemistry, Vol. 27, 1986.  相似文献   

17.
Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca(2+) concentration via activation of its G-protein-coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring (15)N and (1)H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca(2+) by paramagnetic Tb(3+) allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance.  相似文献   

18.
19.
Silkmoth proteins secreted from the follicular cells that surround the oocyte form a large extracellular assembly which is important for protecting and sustaining the structure of the oocyte and the developing embryo. These proteins have been classified into two major families (A and B). Sequence analysis showed conservation of a central domain containing long stretches of six amino acid residue repeats in both families, which have been suggested to be organized in beta-sheet structures. In this work NMR and CD spectra, as well as molecular calculations, have been used to investigate the conformational properties of two synthetic peptides (A and B), analogues of parts of the central domain of silkmoth chorion proteins of the A and B families, respectively. These peptides consist of three tandem repeats of the six-residue basic motif. Analysis of CD spectra of the two peptides in aqueous solutions and mixtures with organic solvents revealed beta-sheet and turn structural elements with a percentage higher than 40%. NOESY spectra at low temperatures (263-273 K) show sequential nOe connectivities (i, i + 1), indicative of a relative flexibility. The presence of HNi-HNi+1 cross-peaks and medium Halphai-HNi+1 connectivities, chemical shift deviations and temperature coefficient data provide, for the first time, experimental evidence that local folded structures around Gly residues occur in peptide segments of chorion proteins in solution. Simulated annealing calculations were used to examine the conformational space of the peptides and to probe the initial steps of amyloid fibril formation in the case of chorion proteins.  相似文献   

20.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CH and Ser CH, Leu3 CH and Leu3 NH, and Leu4 CH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号