首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

2.
Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times.  相似文献   

3.
Summary A key intermediate, S-(–)-3-benzoylthio-2-methylpropanoic acid (1) was made in high optical purity by the lipase-catalyzed stereoselective esterification of racemic 1 with methanol in an organic solvent system. Among various lipases evaluated, Amano P-30 lipase from Pseudomonas sp. efficiently catalyzed the esterification of 1 to yield R-(+) methyl ester and unreacted S-(–) 1. A reaction yield of 40 mol% and an optical purity of 97.2% were obtained for compound 1 at a substrate concentration of 0.1 m (22 mg/ml). Lipase P-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (23 cycles) in the esterification reaction without loss of enzyme acitivity, productivity or optical purity. Among various solvents evaluated, toluene was found to be the most suitable organic solvent and methanol was the best alcohol for the esterification of racemic 1 by immobilized lipase. Substrate concentrations as high as 1.0 m were used in the esterification reaction. When the temperature was increased from 28° C to 60° C, the reaction time required for the esterification of 0.1 m substrate decreased from 16 h to 2 h. On increasing the methanol to substrate molar ratio from 1:1 to 4:1, the rate of esterification decreased. A lipase fermentation using Pseudomonas sp. ATCC 21 808 was developed. In the batch-fermentation process, 56 units/ml of extracellular lipase activity was obtained. A fed-batch process using soybean oil gave a significant increase in the lipase activity (126 units/ml). Crude lipase recovered from the filtrate by ethanol precipitation and immobilized on Accurel PP was also effective: S-(–) compound 1 was obtained in 35 mol% yield and 95% optical purity. Offsprint requests to: R. N. Patel  相似文献   

4.
The synthesis of ethyl-oleate by the lipase from the newly isolated strain Burkholderia cepacia LTEB11 in three different systems has been studied - immobilization on a hydrophobic support (Accurel EP 100®), encapsulation in reverse micelles, and direct addition of powdered free enzyme to the reaction medium. The immobilized enzyme performed best, giving a 70% ester yield in 10 h, this yield being five-fold greater than that obtained for reversed micelles, and two and a half times greater than that obtained for direct addition. An increase in the amount of immobilized enzyme preparation added gave a 100% ester yield in 3 h. The immobilized preparation was quite stable, giving a 100% yield of ethyl-oleate during 11 repeated reactions, and 50% yield after 24 reactions. These results suggest that the lipase of our strain of B. cepacia LTEB11 immobilized on Accurel has good potential for application in biocatalysis in organic media.  相似文献   

5.
The synthesis of ethyl-oleate by the lipase from the newly isolated strain Burkholderia cepacia LTEB11 in three different systems has been studied – immobilization on a hydrophobic support (Accurel EP 100®), encapsulation in reverse micelles, and direct addition of powdered free enzyme to the reaction medium. The immobilized enzyme performed best, giving a 70% ester yield in 10 h, this yield being five-fold greater than that obtained for reversed micelles, and two and a half times greater than that obtained for direct addition. An increase in the amount of immobilized enzyme preparation added gave a 100% ester yield in 3 h. The immobilized preparation was quite stable, giving a 100% yield of ethyl-oleate during 11 repeated reactions, and 50% yield after 24 reactions. These results suggest that the lipase of our strain of B. cepacia LTEB11 immobilized on Accurel has good potential for application in biocatalysis in organic media.  相似文献   

6.
Methods for the immobilization of lipases and their use for ester synthesis   总被引:5,自引:0,他引:5  
The lipase from Pseudomonas fluorescens was immobilized onto five different carriers: celite, octyl-silica, aminopropyl-silica, gluterdialdehyde-activated silica and Eupergit C250L. Activities and operational stabilities of the prepared catalysts were compared using the enantioselective acylation of (R,S)-1-phenylethanol by vinyl acetate as acyl donor and t-butylmethyl ether with variable water content (0.038-0.97% v/v) as reaction medium. The above carriers provide catalysts with widely different specific activities ranging from excellent 25 mmol/h mg protein (celite) to 0.07 mmol/h mg protein (glutardialdehyde-activated silica) on the lower end. The lipase immobilized onto Eupergit C250L exhibited the best operational stability among the catalysts studied. It retained 30% of its initial activity after 11 cycles of application, each with a duration between 2 and 6 h.  相似文献   

7.
Summary A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa BTS-2 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel network. The hydrogel showed approximately 95% binding efficiency for lipase (specific activity 1.96 U mg−1). The immobilized enzyme achieved 65.1% conversion of ethanol and propionic acid (100 mM each) into ethyl propionate in n-nonane at 65 °C in 9 h. When alkane of C-chain length lower than n-nonane was used as the organic solvent, the conversion of ethanol and propionic acid into ethyl propionate decreased with a decrease in the log P value of alkanes. The immobilized lipase retained approximately 30% of its original catalytic activity after five cycles of reuse for esterification of ethanol and propionic acid into ethyl propionate at temperature 65 °C in 3 h. Addition of a molecular sieve (3 ?) to the reaction mixture enhanced the formation of ethyl propionate to 89.3%. Moreover, ethanol and propionic acid when taken a molar ratio of 3:1 further promoted the conversion rate to 94%. However, an increase in the molar ratio of propionic acid with respect to ethanol resulted in a decline of ethyl propionate synthesis.  相似文献   

8.
A unique method that applied a multilayer-immobilization strategy was developed to prepare nanofibrous enzymes for biosynthesis. LiCl co-electrospun with polyurethane nanofibers enabled strong physical adsorption of bovine serum albumin (BSA), forming the first layer of protein on the nanofibers; lipase AK was subsequently crosslinked to BSA as an outer layer of enzyme. The content of LiCl in nanofibers was found to be a sensitive factor affecting the activity and stability of the immobilized lipase. For biodiesel synthesis from soybean oil and methanol in isooctane, the reaction rate catalyzed by nanofibrious lipase carrying 5 wt% LiCl was 6.6-fold higher than fibers without LiCl, with a conversion of 91% was achieved within 2 h. LiCl also induced much improved enzyme stability. The nanofibrous lipase with 5% LiCl could be repeatedly used for 42 cycles without apparent activity loss, while the immobilized lipase without LiCl lost over 90% activity within 13 reuse cycles.  相似文献   

9.
Optimization of hexyl-&#103-glycoside synthesis from lactose in hexanol at low water activity and high temperature was investigated using &#103-glycosidases from hyperthermophilic organisms: Sulfolobus solfataricus (LacS) and Pyrococcus furiosus (CelB). The method for water activity adjustment by equilibration with saturated salt solutions was adapted for use at high temperature. The influence of enzyme immobilization (on XAD-4, XAD-16, or Celite), addition of surfactants (AOT or SDS), substrate concentration, water activity, and temperature (60-90°C) on enzymatic activity and hexyl-&#103-glycoside yield were examined. Compared to other &#103-glycosidases in lactose conversion into alkyl glycoside, these enzymes showed high activity in a hexanol one-phase system and synthesized high yields of both hexyl-&#103-galactoside and hexyl-&#103-glucoside. Using 32 &#117 g/l lactose (93 &#117 mM), LacS synthesized yields of 41% galactoside (38.1 &#117 mM) and 29% glucoside (27.0 &#117 mM), and CelB synthesized yields of 63% galactoside (58.6 &#117 mM) and 28% glucoside (26.1 &#117 mM). With the addition of SDS to the reaction it was possible to increase the initial reaction rate of LacS and hexyl-&#103-galactoside yield (from 41 to 51%). The activity of the lyophilized enzyme was more influenced by the water content in the reaction than the enzyme on solid support. In addition, it was concluded that for the lyophilized enzyme preparation the enzymatic activity was much more influenced by the temperature when the water activity was increased. A variety of different glycosides were prepared using different alcohols as acceptors.  相似文献   

10.
Candida rugosa lipase was immobilized on magnetic nanoparticles supported ionic liquids having different cation chain length (C1, C4 and C8) and anions (Cl, BF4 and PF6). Magnetic nanoparticles supported ionic liquids were obtained by covalent bonding of ionic liquids–silane on magnetic silica nanoparticles. The particles are superparamagnetic with diameter of about 55 nm. Large amount of lipase (63.89 mg/(100 mg carrier)) was loaded on the support through ionic adsorption. Activity of the immobilized lipase was examined by the catalysis of esterification between oleic acid and butanol. The activity of bound lipase was 118.3% compared to that of the native lipase. Immobilized lipase maintained 60% of its initial activity even when the temperature was up to 80 °C. In addition, immobilized lipase retained 60% of its initial activity after 8 repeated batches reaction, while no activity was detected after 6 cycles for the free enzyme.  相似文献   

11.
This work investigated the oxidative injury to human red blood cells (RBCs) by the exposure to exogenous malondialdehyde (MDA), in a physiological environment. When a 10% RBC suspension was incubated in autologous plasma, in the presence of 50 &#117 &#119 M MDA, 30% of MDA entered into the cells. A time-course study showed that MDA caused early (30-120 &#117 min) and delayed (3-18 &#117 h) effects. MDA caused a fast depletion of reduced glutathione, and loss of the glucose-6-phosphate dehydrogenase activity, followed by a decrease of HbO 2 . Accumulation of methemoglobin, and formation of small amounts of hemichrome were later evident. Also, an HbO 2 -derived fluorescent product was measured in the membrane. The redox unbalance was followed by structural and functional damage to the membrane, evident as the formation of conjugated diene lipid hydroperoxides, concurrent with a sharp accumulation of MDA, consumption of membrane vitamin E, and egress of K + ions. SDS--PAGE of membrane proteins showed formation of high molecular weight aggregates. In spite of the marked oxidative alterations, the incubation plasma prevented a substantial hemolysis, even after a 18 &#117 h incubation. On the contrary, the exposure of RBCs to 50 &#117 &#119 M MDA in glucose-containing phosphate saline buffer, resulted in a 16% hemolysis within 6 &#117 h. These results indicate that the exposure to MDA causes a rapid intracellular oxidative stress and potentiates oxidative cascades on RBCs, resulting in their dysfunction.  相似文献   

12.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

13.
The present work investigates the influence of the support surface on the loading and the enzymatic activity of the immobilized Pseudomonas fluorescens lipase. Different porous materials, polypropylene (Accurel), polymethacrylate (Sepabeads EC-EP), silica (SBA-15 and surface modified SBA-15), and an organosilicate (MSE), were used as supports. The immobilized biocatalysts were compared towards sunflower oil ethanolysis for the sustainable production of biodiesel. Since the supports have very different structural (ordered hexagonal and disordered) and textural features (surface area, pore size, and total pore volume), in order to consider only the effect of the support surface, experiments were performed at low surface coverage. The different functional groups occurring on the support surface allowed either physical (Accurel, MSE, and SBA-15) or chemical adsorption (Sepabeads EC-EP and SBA-15–R-CHO). The surface-modified SBA-15 (SBA-15–R-CHO) allowed the highest loading. The lipase immobilized on the MSE was the most active biocatalyst. However, in terms of catalytic efficiency (activity/loading) the lipase immobilized on the SBA-15, the support that allowed the lowest loading, was the most efficient.  相似文献   

14.
Different methods for stabilization of Mucor circinelloides lipase, facilitating its application in organic solvents were tested. Lipase was either isolated from the mycelium and immobilized on solid carriers (derivatives of cellulose, diatomaceous earth, modified porous glass) or immobilized in situ in the mycelium pellets and stabilized. The immobilized enzyme preparations were used for synthesis of sucrose, glucose, butyl and propyl oleates and caprylates, carried out in petroleum and di-n-pentyl ethers. Immobilized preparations of either crude or purified lipase isolated from the mycelium were at least 4–6 times less effective in sucrose esters synthesis than mycelium-bound lipase preparations. Lipase preparation with the highest synthetic activity was obtained by cross-linking of M. circinelloides mycelium pellets with glutardialdehyde (operational stability in sucrose caprylate synthesis was 94% after 4 runs (24 h each), and caprylic acid conversion was 91–85%). The best method for production of mechanically durable biocatalyst, which efficiently catalyzed sucrose esters synthesis, was found to be entrapment of the mycelium-bound lipase in polyvinyl pyrrolidone-containing chitosan beads solidified with hexametapolyphosphate.  相似文献   

15.
以硅藻土为载体,采用吸附法,对脂肪酶进行固定化,研究了固定化条件对固定化脂肪酶的催化活性的影响,得到最佳的固定化条件:给酶量为33374U/g,固定化温度为35℃,pH值为7.5,时间为4h,此时固定化酶的活力约为5833U/g载体。固定化酶的热稳定性较游离酶有了很大的提高,其在80℃以下能保持80%以上的酶活,而游离酶60℃残余酶活仅为5%。最适反应温度和最适pH值也分别由游离酶的40℃上升至50℃和由7上升到7.5。对固定化中的中性脂肪酶在生物柴油合成中的应用也进行了初步研究。  相似文献   

16.
TiO2 nanofibers with uniform diameter about 125 nm were prepared based on sol–gel process and electrospinning technology. Protex 6L, an industrial alkaline protease, was covalently immobilized on TiO2 nanofiber through γ-aminopropyltriethoxysilane modification and glutaraldehyde crosslinking. With 2 (v/v)% glutaraldehyde as crosslinker, the enzyme loading is about 201 mg (g nanofiber membrane)−1, and the specific activity of the immobilized Protex 6L is 2.45 μmol h−1 ml−1 mg−1 protein for synthesis of sucrose monolaurate from sucrose and vinyl laurate. The optimal condition for sucrose monolaurate production is 5% (v/v) water content in DMSO/2-methyl-2-butanol solvent mixture and 50°C. Under this condition, 97% conversion was achieved within 36 h by nanofibrous Protex 6L, which is corresponding to a productivity 34 times higher than that of most widely used Novozym 435. After 10 cycles reuse, nanofibrous Protex 6L retained 52.4% of its original activity.  相似文献   

17.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

18.
《Process Biochemistry》2014,49(8):1332-1336
Keratinase from Purpureocillium lilacinum LPSC # 876 was immobilized on chitosan beads using two different cross-linking agents: glutaraldehyde and genipin. For its immobilization certain parameters were optimized such as cross-linker concentration, activation time and activation temperature. Under optimum conditions, enzyme immobilization resulted to be 96 and 92.8% for glutaraldehyde and genipin, respectively, with an activity recovery reaching up to 81% when genipin was used. The immobilized keratinase showed better thermal and pH stabilities compared to the soluble form, retaining more than 85% of its activity at pH 11 and 74% at 50 °C after 1 h of incubation. The residual activity of immobilized keratinase remained more than 60% of its initial value after five hydrolytic cycles. The results in this study support that glutaraldehyde could be replaced by genipin as an alternative cross-linking eco-friendly agent for enzyme immobilization.  相似文献   

19.
Abstract

Pseudomonas sp. lipase (PSL) immobilization was performed using three different protocols. Lipase immobilized on Diaion HP20 (HP20-PSL) exhibited the highest catalytic activity and stability in the kinetic resolution of racemic 2-octanol. The reaction rate of HP20-PSL was approximately 20 times higher than that of free PSL and the residual activities of HP20-PSL and free PSL were respectively 84% and 19% after incubation in the reaction medium for 72 h. A study of the effect of different reaction parameters on HP20-PSL-catalyzed resolution of (R,S)-2octanol showed that the optimal water content of the immobilized matrix and the optimal molar ratio of vinyl acetate to 2-octanol were 60 ± 5% and 2.5:1, respectively. Under the optimized reaction conditions, (S)-2-octanol of high optically purity (enantiomeric excess > 99%) could be recovered at 53% conversion rate, and HP20-PSL could be reused for ten cycles without significant decrease in its activity and enantioselectivity.  相似文献   

20.
Acinetobacter junii SY-01 producing a lipase enantioselectively hydrolyzing 1,3-dioxolane derivatives was isolated from water sludge sample and the effect of solvent, acyl donor, vinyl acetate concentration, substrate concentration, operating temperature and immobilization on activity and enantioselectivity was studied for the resolution of 1,3-dioxolane derivatives through transesterification reaction using a lipase from the isolated strain. Best selectivity was obtained at lower substrate concentration (3–5 mM), higher vinyl acetate concentration (500–1000 mM) and lower temperature (30–40 °C) in the reaction mixture. Lipase immobilized onto Accurel MP-1000 (micro-porous polypropylene) gave the best results and the reactivity was about 29-fold higher than the free enzyme without the decrease of enantioselectivity. Resolution of 1,3-dioxolane derivatives was carried out in flask scale containing 100 ml solvents using the lipase immobilized onto Accurel MP-1000. In this reaction, the yield and enantiomeric excess of the remaining (2R, 4S)-alcohol were 31.2% and 98.2%, respectively. This result suggests that it can be used as an alternative method, compared to the present synthetic method, for the production of optically pure (2R, 4S)-itraconazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号