首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessing environmental impacts on coral reef communities has become a growing discipline. As most corals grow relatively slowly, the common method of monitoring changes in coral communities may limit our ability to identify stressors and stress responses. Since chlorophyll density (amount of chlorophyll a + c2 per unit of coral surface area) in corals may correlate with coral color, the latter has been suggested as an indicator of the natural seasonal changes in undisturbed (“healthy”) corals, as well as an indicator of environmentally-induced stresses in corals, including those related to bleaching. However, the color of underwater objects as perceived through the naked eye or a camera is affected by attenuation of irradiance with depth, changes in spectral properties of underwater light, turbidity and dissolved materials in the water, among other factors. Thus, methodological issues have so far held back the use of color as a quantitative indicator for chlorophyll content. Presented here are two accurate and easy to use methods for quantitative measurements of chlorophyll density from digital photographs of corals. In these methods, the intensities of the red, green and blue channels in digital photographs were compared to measured chlorophyll densities in Stylophora pistillata. Variations in external light, known to bias the true color in underwater images, were eliminated either by photographing corals through a specially built funnel with an internal light source or by mathematically normalizing color channels to a gray reference scale. In both methods, chlorophyll density was highly correlated with the intensity of the red channel, despite large variations in lighting conditions during the photography.These photographic methods enabled the estimation of natural spatial and temporal changes of the chlorophyll density of corals. By predicting chlorophyll density in corals at very low costs, both methods presented here could facilitate the study of large-scale physiological changes in corals.  相似文献   

2.
The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12‐year period including during flood plume–induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70–86% of the total genetic variation. An additional 9–27% of variation was explained by significant differentiation of populations among sites separated by 0.4–13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6–7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site‐wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.  相似文献   

3.
In 1998, the Indian Ocean coral reefs suffered a severe and extensive mass bleaching event. The thermal tolerances of corals were exceeded and their photosynthetic symbionts (zooxanthellae) lost. Mortalities of up to 90% were recorded on the reefs of Seychelles, Maldives, Kenya and Tanzania. South African coral reefs were among the few that largely escaped the 1998 mass bleaching event, but may be threatened in the future if global warming increases. This study assessed the extent of coral bleaching and partial recovery at Sodwana Bay, South Africa during 2000 and 2001. Bleaching levels in this study varied over the course of a year, which suggested that seasonally varying parameters such as sea temperature were the most likely cause of bleaching. Bleaching levels were highest at the shallowest site. However, these bleaching levels were very low in comparison with those of reefs elsewhere in the Indian Ocean. The greater volume of water over the relatively deeper reefs of Sodwana Bay may have protected the reefs from severe bleaching. Field measurements on the three reefs indicated that, although the reefs at Sodwana Bay are still healthy, bleaching increased from <1% in 1998 to 5–10% in 2002. Bleaching occurred in 26 coral genera. The Alcyonacea were highly susceptible to bleaching, especially Sarcophyton sp. Among the hard corals, Montipora spp. were the species most susceptible to bleaching. The sensitivity of these genera to early and slight increases in temperature suggests that they can forewarn of a possible greater bleaching event. In contrast, the coral genera Turbinaria and Stylophora were most resistant to bleaching.  相似文献   

4.
Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/c, phaeopigments and MI contributed to the variance between health conditions.  相似文献   

5.
Experimental bleaching reduces the levels of important biochemical parameters in adult tissues and eggs of the soft coral Lobophytum compactum. Protein, lipid, mycosporine-like amino acids (MAAs) and carotenoid concentrations remained lower in bleached adults than in controls for at least 8 months. Reductions in concentrations of all four parameters were greater in eggs than in maternal tissues, potentially jeopardizing egg and larval viability. In particular, reductions in lipids, proteins and carotenoids in tissues of heavily bleached soft corals were amplified approximately twofold in eggs. In comparison, amplification of maternal tissue reductions were not as great for MAAs, suggesting that MAAs are given higher priority in egg provisioning. Our finding that MAA levels are normally three times higher in eggs than in unbleached maternal tissues supports the importance of MAAs for larval survival. Twenty months after experimental bleaching the biochemical composition of both adult tissues and their eggs were indistinguishable from those of control (unbleached) soft corals. Accepted: 1 June 2000  相似文献   

6.
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat‐forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5‐fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching‐induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future.  相似文献   

7.
The symbiotic dinoflagellate microalgae of corals (Symbiodinium spp.) contain high concentrations of dimethylsulfoniopropionate (DMSP), a multifunctional metabolite commonly found in many species of marine algae and dinoflagellates. A photoprotective antioxidant function for DMSP and its breakdown products has often been inferred in algae, but its role(s) in the coral–algal symbiosis remains elusive. To examine potential correlations between environmental and physiological parameters and DMSP, total DMSP (DMSPt, from the host coral and zooxanthellae), particulate DMSP (DMSPp, from the zooxanthellae only), coral surface area, and total protein, as well as zooxanthellae density, chlorophyll concentration, cell volume and genotype (i.e., clade) were measured in five coral species from the Diploria-Montastraea-Porites species complex in Bermuda along a depth gradient of 4, 12, 18, and 24 m. DMSPt concentrations were consistently greater than DMSPp concentrations in all species suggesting the possible translocation of DMSP from symbiont to host. D. labyrinthiformis was notably different from the other corals examined, showing DMSPp and DMSPt increases (per coral surface area or tissue biomass) with increasing water depth. However, overall, there were no consistent depth-related patterns in DMSPp and DMSPt concentrations. Further research, investigating dimethylsulfide (DMS), dimethylsulfoxide, and acrylate levels and DMSP-lyase activity in correlation with other biomarker endpoints that have been shown to be depth (i.e., temperature and light) responsive are needed to substantiate the significance of these findings.  相似文献   

8.
Accelerated human development in coastal areas is causing declines in coral reefs worldwide, but the mechanisms by which development leads to reef degradation are often difficult to identify. Here, we use Akaike information criterion model averaging in combination with path analysis to test for the direct and indirect effects of potential environmental stressors on two coral diseases on the west coast of Hawai'i. We quantified human‐altered land cover and human population density at two spatial scales: inland area of 1‐km radius and watershed. We then tested for the effects of these land cover variables, as well as seawater chlorophyll α concentrations, depth, host coral cover, and proximity to surface water discharge on the density of growth anomalies (GA) and prevalence of trematodiasis (TRE) affecting Porites lobata, the locally dominant reef‐building coral species. Our analyses showed that human‐altered land cover measured at 1‐km scale was a strong indirect predictor of GA. Specifically, we found that human interference adjacent to the coast predicted higher chlorophyll α concentrations, which in turn predicted higher GA density. We also found that chlorophyll α and depth were strong negative predictors of TRE, and host coral cover a positive predictor. Our results indicated that GA are likely regulated by indirect land‐based anthropogenic impacts, whereas TRE is mostly affected by host density‐dependent forces. Path analysis can serve as a useful tool to rapidly identify the scale and indirect effects of anthropogenic stressors related to coral diseases, allowing for accurate conservation planning in the face of limited resources for tropical conservation.  相似文献   

9.

Intra-species morphological variation may occur in sessile organisms, such as corals, living in different habitats. Conversely, the octocoral Briareum asbestinum exhibits both encrusting and upright branching morphologies at the same shallow water habitat, enabling studying physiological differences uncoupled from habitat variation due to depth or reef location. We investigated the mutualism between endosymbiotic dinoflagellate algae, Breviolum spp. (previously clade B Symbiodinium), and these B. asbestinum morphologies at ambient and elevated temperatures. Based on msh1 gene sequences, the host morphologies were genetically similar although they differed in protein content, polyp expansion behavior, and associated Breviolum (B19 for encrusting and B21 for branching B. asbestinum). Due to colony orientation, polyps in encrusting B. asbestinum experienced irradiance levels nearly three times higher than polyps in the branching morph, which probably contributed to the lower photochemical and light absorption efficiencies of the Breviolum in encrusting fragments. The light-limited portion of photosynthesis–irradiance curves and the intracellular chlorophyll concentrations, however, indicated that Breviolum in both morphologies were acclimated to similar internal irradiances. Encrusting B. asbestinum exhibited higher Breviolum density, areal chlorophyll a, and greater photosynthetic rates cm−2 compared to branching B. asbestinum. Notably, elevated temperature did not cause bleaching in either morphology, as Breviolum and chlorophyll densities did not differ significantly from ambient temperature, although the two morphologies adjusted some of the measured parameters, indicating coping with the stressor. In the face of continued ocean warming, the high thermal tolerance of octocorals may reinforce the shift of Caribbean reefs from scleractinian coral to octocoral dominance.

  相似文献   

10.
Coral reefs are increasingly affected by high-temperature stress events and associated bleaching. Monitoring and predicting these events have largely utilized sea surface temperature data, due to the convenience of using large-scale remotely sensed satellite measurements. However, coral bleaching has been observed to vary in severity throughout the water column, and variations in coral thermal stress across depths have not yet been well investigated. In this study, in situ water temperature data from 1999 to 2011 from three depths were used to calculate thermal stress on a coral reef in Bahia Almirante, Bocas del Toro, Panama, which was compared to satellite surface temperature data and thermal stress calculations for the same area and time period from the National Oceanic and Atmospheric Administration Coral Reef Watch Satellite Bleaching Alert system. The results show similar total cumulative annual thermal stress for both the surface and depth-stratified data, but with a striking difference in the distribution of that stress among the depth strata during different high-temperature events, with the greatest thermal stress unusually recorded at the deepest measured depth during the most severe bleaching event in 2005. Temperature records indicate that a strong density-driven temperature inversion may have formed in this location in that year, contributing to the persistence and intensity of bleaching disturbance at depth. These results indicate that depth may not provide a stress refuge from high water temperature events in some situations, and in this case, the water properties at depth appear to have contributed to greater coral bleaching at depth compared to near-surface locations. This case study demonstrates the importance of incorporating depth-stratified temperature monitoring and small-scale oceanographic and hydrologic data for understanding and predicting local reef responses to elevated water temperature events.  相似文献   

11.
Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.  相似文献   

12.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

13.
The algae living endosymbiotically within coral are thought to increase algal pigmentation with increasing depth to capture the diminishing light. Here, we follow distribution of the hermatypic coral Seriatopora hystrix along a 60-m bathymetric gradient in the Gulf of Eilat, Red Sea, to study coral ecophysiology and response to light regimes. Combining work on coral morphology, pigment content and genotyping of the photosymbiont, we found that total chlorophyll concentration per zooxanthellae cell and the dark- and light-acclimated quantum yield of photosystem II did not vary significantly along the 60-m gradient. However, the chlorophyll a/c ratio increased with depth. This suggests that the symbiotic algae in S. hystrix possess a mechanism for acclimatization or adaptation that differs from previously described pathways. The accepted photoacclimatory process involves an increase in chlorophyll content per alga as light intensity decreases. Based on corallite and branch morphology, this research suggests that S. hystrix has two depth-dependent ecophenotypes. Above 10 m depth, S. hystrix exhibits sturdier colony configurations with thick branches, while below 30 m depth, colonies are characterized by thin branches and the presence of a larger polyp area. Between 10 and 30 m depth, both ecophenotypes are present, suggesting that corallite morphology may act as another axis of photoacclimation with depth.  相似文献   

14.
15.
Two coral cays near La Parguera, Puerto Rico, have large, exposed coral ramparts composed almost entirely of loose pieces of elkhorn coral Acropora palmata (88% of horizontal transects, 98% of vertical transects). The total volume of elkhorn coral in the ramparts of the two cays was estimated at 3600 and 12 800 m3. The present volume of living elkhorn coral on these two reefs was estimated at 7 and 14 m3 and previous volumes at 11 000 and 34 900 m3. White-band disease was found on 8.5% of living elkhorn colonies. Lang’s boring sponge Cliona langae covered 10.8% of the total transect area, overgrowing both dead and living corals. White-band disease and coral-reef bleaching have drastically reduced the populations of elkhorn coral, thus, skeletal coral materials to replenish the plate ramparts are severely reduced, disrupting the process of forming and maintaining these coral reef ramparts. We predict that the next series of major storms striking these prominent cay ramparts will remove them. These disappearances will represent a quick, obvious and permanent consequence of global disturbances. Loss of cay ramparts will modify the environments on and around Atlantic coral reefs. Ramparts may be similarly lost from Indo-Pacific reefs. The lack of any other indisputable definitive indicators of long-term, major disturbances on coral reefs makes the distinct loss of coral-reef ramparts an important physical sign.  相似文献   

16.
This study examines patterns of susceptibility and short-term recovery of corals from bleaching. A mass coral bleaching event began in March, 1991 on reefs in Moorea, French Polynesia and affected corals on the shallow barrier reef and to >20 m depth on the outer forereef slope. There were significant differences in the effect of the bleaching among common coral genera, with Acropora, Montastrea, Montipora, and Pocillopora more affected than Porites, Pavona, leptastrea or Millepora. Individual colonies of the common species of Acropora and Pocillopora were marked and their fate assessed on a subsequent survey in August, 1991 to determine rates of recovery and mortality. Ninety-six percent of Acropora spp. showed some degree of bleaching compared to 76% of Pocillopora spp. From March to August mortality of bleached colonies of Pocillopora was 17%, 38% recovered completely, and many suffered some partial mortality of the tissue. In contrast, 63% of the Acropora spp. died, and about 10% recovered completely. Generally, those colonies with less than 50% of the colony area affected by the bleaching recovered at a higher rate than did those with more severe bleaching. Changes in community composition four months after the event began included a significant decrease only in crustose algae and an increase in cover of filamentous algae, much of which occupied plate-like and branching corals that had died in the bleaching event. Total coral cover and cover of susceptible coral genera had declined, but not significantly, after the event.  相似文献   

17.
Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.  相似文献   

18.
Incubation of cultures of a high-temperature strain of chlorella at 10 C stopped growth and bleached all chlorophyll in the cells in 24 hr. Optimal conditions of light (3.0 mw/cm2), gas (1% CO2-in-air), and inorganic medium for maximal growth at 39 C were maintained in the transfer from 39 to 12, 10, or 5 C. The bleaching process at 10 C is characterized by a lag period for the first few hours followed by a linear decrease in chlorophyll content of cultures. The amounts of time required to bleach half of the chlorophyll initially present (effective half-times) at 10 C were 14 hr for chlorophyll a and 17 hr for chlorophyll b. Effective half-times of bleaching for total chlorophyll were 47 hr at 12 C and 6 hr at 5 C. Addition of glucose to inorganic medium delayed but did not prevent bleaching. Use of argon gas instead, of 1% CO2-in-air prevented cells from bleaching in both inorganic and glucose media, and indicated an oxygen requirement for bleaching. Incubation of 6 additional strains of Chlorella at 10 C resulted in responses ranging from bleaching to no growth to growth.  相似文献   

19.
With this study we estimated the changes in colour, bleaching and mortality of coral colonies from February to December 2007, using the colour reference card method. The study was developed in the Watamu Marine Park lagoon (Kenya), bridging the local summer when seawater temperatures were highest and coral bleaching risk was at its maximum. Seven coral genera were selected, and their colour recorded using a colour reference card (Coral Watch card). Seven different scenarios of bleaching and mortality were observed, varying among the coral genera and between two species in the genus Pocillopora. Twenty percent of the colonies bleached, of which 50% died. Only 15% of the coral that did not bleach died. Branching genera had a higher bleaching incidence than massive and sub-massive genera. Pocillopora showed the highest bleaching susceptibility, followed by Acropora, and the highest level of mortality. Of the two species of Pocillopora considered in this study, P. eydouxi showed higher bleaching and mortality levels, while P. verrucosa bleached less and experienced only partial mortality. Our results evidenced different patterns of coral bleaching and mortality which were easily and clearly detected with the colour card method during both bleaching and a post-bleaching events.  相似文献   

20.
Coral reefs distant from human population were sampled in the Red Sea and one‐third showed degradation by predator outbreaks (crown‐of‐thorns‐starfish = COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20 years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote‐sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20‐year disturbance frequency, but degradation at higher frequency. Trajectories move from fast‐grower to slow‐grower dominance at intermediate disturbance frequency, then again to fast‐grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号