首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   

2.
A novel esterase isolated from Fusarium oxysporum was investigated for the synthesis of short-chain esters of geraniol by alcoholysis and direct esterification reactions in organic solvents. The enzyme was used as a dried powder (i.e., not immobilized). The reaction parameters affecting the enzyme behavior such as the nature of organic solvent and acyl donor, the concentration of substrates and the water activity of the system were studied. High yields (80–90%) were obtained by both approaches (alcoholysis and direct esterification) at low values of water activity (aw=0.11) in n-hexane. The enzyme retain its catalytic activity even after fifth reuse in n-hexane at aw=0.11, demonstrating its stability and efficiency under the conditions of this study.  相似文献   

3.
The effect of the rapid reduction of the water activity (aw) on the extracellular protein and amylolytic activity of Aspergillus niger was studied. An aw value gradient from 0.90 to 0.99 in KCl solutions was applied for the mycelium treatment. It was found that the aw reduction considerably influenced the protein secretion. This phenomenon was dependent on the age of the treated mycelium and the range of the aw gradient. The highest protein and enzyme secretion yields were obtained at aw = 0.98 using a 72-h old mycelium. In comparison with the non-treated mycelium, the increase in the secretion amounted to about 60% for the amylolytic activity and 37% for the soluble protein, respectively. It was shown that the mycelium incubated in KCl solutions of an aw value from 0.90 to 0.99 had the ability for regeneration in fresh CZAPEK-DOX medium. The effect of the osmotic shock on the protein secretion was limited only for the treated cell population and declined in the mycelium which was regenerated after the transfer into the culture medium.  相似文献   

4.
Abstract

The presence of two different additives during non-covalent immobilization of lipase was studied. Lipase was immobilized via hydrophobic interactions on an amorphous silica with large pore size bearing octyl groups on the surface. Polyethyleneglycol (PEG) with different molecular weights (MW: 1500, 3000 and 10,000) were added to the suspension during enzyme immobilization, in an enzyme to PEG molar ratio of 1:10, and also 1:20 in the case of PEG1500. The activity after 15 d increased from 10% (absence of PEG) to values close to 40% in samples with PEG except the catalyst immobilized in the presence of 1:10 PEG1500, which kept fully active after 15 d incubation in toluene at 70?°C. The presence of water during storage of immobilized enzymes leads to significant activity loss. Saturated solutions of salts controlling the water activity of the systems were used to reduce in a controlled fashion the moisture of the systems: CaCl2 (aw=?0.037), MgCl2 (aw=?0.328), Mg(NO3)2 (aw=?0.529), Na2PO4.12H2O (aw=?0.74) and KCl (aw=?0.84). The immobilized lipase was suspended in saturated solutions of these salts, and then filtered and incubated in desiccators in the presence of the corresponding saturated salt solutions. Catalysts suspended and incubated in KCl or only suspended in phosphate kept some 20% activity after 33 d incubation whereas the maximal stability was achieved when the catalyst was suspended in phosphate and kept in a desiccator without salt solution. This catalyst kept around 50% activity after 33 d incubation. An inversely proportional relationship can be established between the stability achieved by the enzyme and the water content of the system.  相似文献   

5.
Amino groups in alpha-chymotrypsin were reacted with pyromellitic anhydride, introducing 17 to 32 additional carboxyl groups. This modification causes a major change in the water adsorption isotherm of the lyophilized protein powder. Little water is bound by the modified enzyme at water activity (aw) below 0.35, but it shows increased water binding at aw over 0.5. This correlates with a similar change in the aw dependence of the catalytic activity of the enzyme powder suspended in hexane, with a much steeper increase in activity of the modified chymotrypsin.  相似文献   

6.
Summary During the solid state fermentation (SSF) of cassava starch by Aspergillus niger estimations were made of total water, consumed water and the residual water remaining in small quantities after 23 h. A theoretical calculation based on the Ross equation showed that the water activity (a w) of the substrate decreased to 0.85 towards the end of the culture. Such low values were assumed to be inhibitory to growth. The a w of the substrate was increased when sugarcane bagasse was used as a high water retention capacity support. Higher growth rates and substrate conversion to biomass were obtained with this system, confirming that water availability is a critical factor in the SSF of starch substrates.Abbreviations A, B Experimental constants - a w Water activity - H2Oc Consumed water - H2OR Residual water - H2OT Total water - IDW Initial dry weight - IMC Initial moisture content - OUR Oxygen uptake rate - S Substrate dry weight - Sc Substrate conversion: consumed substrate/initial substrate - S H Amount of sugars hydrolysed - SSF Solid state fermentation - X Biomass dry weight - W * Amount of solids/g of water  相似文献   

7.
Summary Kinetic parameters were determined for esterification of dodecanol and decanoic acid in hexane catalysed by lipases from Rhizomucor miehei and Candida rugosa, after pre-equilibration to different values of thermodynamic water activity (aw). Vm increases with increasing aw, but so do the Km values for both substrates. The effect on Km for the alcohol probably represents competition between the first product and the second substrate, as expected for Ping-Pong kinetics. The rise in Km for the acid probably reflects the displacement of water molecules during substrate binding.  相似文献   

8.
Survival of alginate-entrapped cells of Azospirillum lipoferum was studied during dehydration using a dry air stream and during prolonged storage at various constant water activity values (aw). During the drying operation, the viability loss remained almost constant from the initial water content to 0.35 g water/g dry weight (DW) corresponding to a 98.5% water removal, strongly increased until a water content of 0.25 g/g DW and then stopped until the end of the drying operational (final aw 0.18). A water content of 0.25 g/g DW (aw=0.55) corresponded to the critical point of the moisture sorption isotherm curve from which water became restricted to the dry material. A high drying rate (5 g/g DW per hour) was shown to be more detrimental for cell viability than a low drying rate (1.18 g/g DW per hour). When the product was stored in a closed chamber with a regulated aw (0.23), the number of living cells decreased during a short period (less than 15 days) corresponding to the product aw stabilization, and then remained constant for more than 150 days. In addition, cell survival during storage was not affected by aw values in the range 0–0.55. Above aw=0.55, the higher the aw and the storage duration, the lower the residual survival percentage. The influence of the drying and storage conditions on the cell death rate are discussed with regard to both the mechanisms generally involved in viability loss and the hydration properties of water. Correspondence to: A. Pareilleux  相似文献   

9.
Summary During tempeh fermentation, Rhizopus oligosporus produced polysaccharidases to degrade soya bean cell walls; the maximum activity for all polysaccharidases tested occurred 20–30 h after inoculation. R. oligosporus was also grown in a soya bean extract model medium to which glycerol was added to control water activity (a w). The overall activities of the major enzymes produced by the fungus, polygalacturonase, endocellulase and xylanase, appeared to be strongly influenced by a w. The production of enzymes as well as their specific activities were affected by a w. The optimum a w for polygalacturonase and xylanase activity coincided with that for mycelial growth, namely 0.99–1.00. In contrast, the optimum a w for (endo)cellulase was 0.98, at which mycelial growth was significantly reduced. Correspondence to: M. Sarrette  相似文献   

10.
The in vitro germination of 11 Metarhizium anisopliae and 11 Beauveria bassiana isolates originating from substrates collected in rural peridomestic areas in Central Brazil where triatomines are common was tested. Conidia completed germination up to 24 h after exposure to water activity of >0.99 aw in all isolates tested. At lower 0.93 aw germination was delayed but conidia of most isolates germinated at high rates (>98 %) within 216 h of incubation. Activities of 2 M. anisopliae and 2 B. bassiana isolates with different patterns of germination at 0.93 aw were tested in Triatoma infestans third instar nymphs. There was no relationship between germination kinetics in vitro at 0.93 aw and their activity in vivo at 98, 75 and 43 % relative humidity (rh). Isolates with accelerated germination at 0.93 aw were not more virulent at 75 and 43 % rh compared with isolates with retarded or no germination. Highest mortalities were observed at 98 % rh, and they did not exceed 25 % after 25 d incubation at lower 75 and 43 % rh. Isolates that originated from a region with an extensive annual arid period showed no adaptation to lower humidity in their activity against T. infestans.  相似文献   

11.
A method for the removal of water and the control of water activity, a w, during enzymatic esterification is the use of salt hydrate pairs. When this technique is used on a laboratory scale, the recovery and reuse of the salt are not critical. Potential problems, such as the reactivity of some salts, can also be overcome simply by substituting another salt. However, if this technique is to be used on a larger scale, economic constraints would require salt recovery and restric the range of salts that could be used. In this article a twin-core packed-bed reactor — used for the esterification of an equimolar mixture of decanoic acid and dodecanol catalysed by lipase from Candida rugosa — which facilitates salt recovery and permits a w control without direct contact between immobilized enzyme and salt, has been described. a w control was maintained by using suitable salt hydrate mixtures in the inner core of the reactor. The substrate mixture was esterified by pumping it through the outer core of the reactor, which contained enzyme immobilized on a macroporous polypropylene support. Complete conversion, albeit at different rates, was obtained with a w buffering at 0.48 and 0.8 by using hydrates of Na4P2O7 and Na2HPO4.  相似文献   

12.
The activity of Candida rugosa lipase (EC 3.1.1.3) in reverse micelles has been measured at various concentrations of water and enzyme with the aim of answering the question, why is the enzyme activity affected by the molar ratio of water to surfactant (w0 = [H2O]/[Surfactant])? In the low range of water content (below w0 ≈ 6), the activity increases with increasing water content, indicating the requirement of a minimum amount of water for the full expression of enzymatic activity. The minimal w0-value for obtaining maximal activity depends on the enzyme concentration: The higher the enzyme concentration, the higher w0, max. In addition, it was found that, at least for the case of Candida rugosa lipase, the measured dependence of enzyme activity on w0 does not represent a true chemical equilibrium. Changing the w0-value during the reaction does not change the activity as expected on the basis of the w0-activity profile obtained for single w0 point measurements. All these observations, however, cannot be directly generalized to all enzymes in reverse micelles, due to the peculiarity of lipase. In particular, the enzyme seems to inactivate irreversibly during the solubilization process.  相似文献   

13.
Summary Ethylene glycol, sorbitol and glycerol were used as water activity depressors to study the effect of water activity on pectinase production byAspergillus niger CH4. Ethylene glycol depressed aw without supporting growth nor strongly affecting pectinase production in petri dish cultures. This depressor was used to evaluate the influence of water activity on exo-pectinase production by SSF. It was found that although pectinase production decreased at low aw values, this activity was present at aw values as low as 0.90. The specific activity increased up to 4.5 fold by reducing aw from 0.98 to 0.90. The reducing groups accumulated extracellularly suggesting sugar transport limitation as a consequence of aw depression.  相似文献   

14.
A new experimental approach based on FTIR spectroscopic measurements was proposed to study simultaneously the adsorption/desorption of water and organic solvent on solid enzyme and corresponding changes in the enzyme secondary structure in the water activity range from 0 to 1.0 at 25 °C. The effect of dioxane on the hydration/dehydration and structure of bovine pancreatic α-chymotrypsin (CT) was characterized by means of this approach. Dioxane sorption exhibits pronounced hysteresis. No sorbed dioxane was observed at low water activities (aw < 0.5) during hydration. At aw about 0.5, a sharp increase in the amount of sorbed dioxane was observed. Dioxane sorption isotherm obtained during dehydration resembles a smooth curve. In this case, CT binds about 150 mol dioxane/mol enzyme at the lowest water activities. Three different effects of dioxane on the water binding by the initially dried CT were observed. At aw < 0.5, water adsorption is similar in the presence and absence of dioxane. It was concluded that the presence of dioxane has little effect on the interaction between enzyme and tightly bound water at low aw. At aw > 0.5, dioxane increases the amount of water bound by CT during hydration. This behavior was interpreted as a dioxane-assisted effect on water binding. Upon dehydration at low water activities, dioxane decreases the water content at a given aw. This behavior suggests that the suppression in the uptake of water during dehydration may be due to a competition for water-binding sites on chymotrypsin by dioxane. Changes in the secondary structure of CT were determined from infrared spectra by analyzing the structure of amide I band. Dioxane induced a strong band at 1628 cm?1 that was assigned to the intermolecular β-sheet aggregation. Changes in the intensity of the 1628 cm?1 band agree well with changes in the dioxane sorption by CT. An explanation of the dioxane effect on the CT hydration and structure was provided on the basis of hypothesis on water-assisted disruption of polar contacts in the solid enzyme. The reported results demonstrate that the hydration and structure of α-chymotrypsin depend markedly on how enzyme has been hydrated — whether in the presence or in the absence of organic solvent. A qualitative model was proposed to classify the effect of hydration history on the enzyme activity-aw profiles.  相似文献   

15.
The conservation of desirable properties in foods and ingredients is often based on the maintenance of the amorphous metastable properties of the systems. Enzymes may be stabilized by drying in saccharide matrices, but a second excipient is generally required to improve sugar protective effects. The effect of electrolytes on the thermophysical properties of sugar systems is of special interest because of their major influence on water structure and their possible interactions with biomolecules. Salts affect the kinetics of very important changes in sugar systems such as crystallization. The purpose of the present work was to analyze fungal β-galactosidase stability in supercooled systems of trehalose-containing electrolytes (water soluble acetates, citrates, and chlorides of magnesium and potassium). The degree of sugar crystallization was also related to enzyme stability. Potassium citrate and acetate improved enzyme stability during freeze-drying and thermal treatment of samples at water activity (a w) of 0.22. However, trehalose crystallization inhibition at a w = 0.43 (which was about 50–60%, related to the system without salt) impaired enzyme protection. Certain salts may act retarding sugar crystallization, but in the presence of salts, trehalose crystallization is even more critical because the enzyme is confined in a highly salt-concentrated region. Thus, crystallization inhibition by sugar–salt combinations should be carefully conducted. Santagapita, Research Fellow, CONICET, Argentina. Buera, Member of CONICET, Argentina. An erratum to this article can be found at  相似文献   

16.
Influence of water activity (aw) on biosynthesis of polygalacturonase, d-xylanase and β-glucosidase in solid culture system of Trichoderma viride TS was studied. It was found that the production of enzymes was strongly affected by water activity of substrate and nature of aw depressor used. The polygalacturonase and d-xylanase production were maximized at aw = 0.995 whereas β-glucosidase formation was favored at aw = 0.96–0.98. The influence of water activity on catalytic effect of enzymes using sodium chloride, glycerol and sorbitol as aw depressor was also investigated. It was observed that sorbitol improved the thermal stability of polygalacturonase and d-xylanase.  相似文献   

17.
Transesterification activity and the industrial potential of a novel lipase prepared from Acinetobacter ventiatus RAG-1 were evaluated. Purified lipase samples were dialyzed against pH 9.0 buffer in a single optimization step prior to lyophilization. The enzyme and organic phase were pre-equilibrated (separately) to the same thermodynamic water activities (a w) ranging from a w 0.33 to 0.97. Production of 1-octyl butyrate by lipase-catalyzed transesterification of vinyl butyrate with 1-octanol in hexane was monitored by gas chromatography. Production of 1-octyl butyrate and initial rate of reaction depended on water activity. Product synthesis and rate of transesterification increased sharply with increase from a w 0.33 to 0.55. Highest product concentration (218 mM) and rate of reaction (18.7 μmol h−1 · 10 μg protein) were measured at a w 0.86. Transesterification activity in hexane represented 32% of comparable hydrolytic activity in aqueous buffer.  相似文献   

18.
Water activity‐temperature state diagrams for Lactobacillus acidophilus freeze‐dried in a sucrose or a lactose matrix were established based on determination of stabilized glass transition temperatures by differential scanning calorimetry during equilibration with respect to water activity at fixed temperatures. The bacteria in the lactose matrix had higher stabilized glass transition temperatures for all aw investigated. The survival of Lactobacillus acidophilus determined as colony forming units for up to 10 weeks of storage at 20°C for (i) aw = 0.11 with both freeze‐dried matrices in the glassy state, (ii) aw = 0.23 with the bacteria in the lactose matrix in a glassy state but with the bacteria in sucrose matrix in the nonglassy state, and (iii) aw = 0.43 with both freeze‐dried matrices in a nonglassy state showed that the nature of the sugar was more important for storage stability than the physical state of the matrix with the nonreducing sucrose providing better stability than the reducing lactose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
Summary The growth and the sporulation of Trichoderma viride TS in relation to water activity (a w) of sugar-beet pulp medium was studied. It was found that the maximum growth, monitored by protein production, substrate utilization and pH alteration, appeared at a w=0.990–0.992. Optimal water activity of the medium for sporogenesis was 0.980. It was observed that both physiological phenomena appeared in narrow ranges of water activity which caused the rigorous a w control in solid-state fermentation to be postulated.  相似文献   

20.
Factors determining the microflora of stored barley grain   总被引:3,自引:0,他引:3  
Colonisation of barley grain has been studied during storage at different water contents and with and without restriction of the air supply to simulate conditions in unsealed silos. Grain stored with a water activity >0·9 aw (20% water content) heated spontaneously when aeration was unrestricted, the maximum temperature attained increasing with aw to 58 °C at 1·0 aw (39% water content). The presence of many unripe grains increased the tendency to heat at a given mean water content. Although heating was prevented by sheeting to restrict the air supply, it could occur subsequently when the sheeting was removed. Both heating and restriction of the air supply were associated with increased carbon dioxide (to >25%) and decreased oxygen concentrations (to <5%). Germination of grain after 6·9 months storage was correlated with aw; germination levels approaching 100% were retained only at about 0·7 aw (13·5% water content). Colonisation by Aspergillus species was correlated with aw and temperature and similar correlations with Penicillium species were also found, with P. verrucosum var. cyclopium abundant at 0·85-0·90 aw (17·20% water content) and P. piceum, P. funiculosum and P. capsulatum at 0·90-0·95 aw (20–25% water content). In sealed containers P. roquefortii occurred at 1·00 aw (39% water content) and P. hordei at 0·90-0·92 aw (20–22% water content). Spores of fungi and actinomycetes formed during spontaneous heating of grain survived 6 months sealed storage although Absidia corymbifera and Micropolyspora faeni may have declined in numbers. Fungicides applied to the ripening grain had only limited effect on the colonisation of the grain during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号